Evaluation of the vulnerability of wild bird populations during heatwave events: implications for biodiversity conservation

Authors

  • Thayssa Duarte Costa
  • Julia Rosa Correia de Moraes
  • Juliana Lyra Timoteo
  • Joselice Rosa

DOI:

https://doi.org/10.54022/shsv4n4-027

Keywords:

animal welfare, avian fauna, bird conservation, climate change, environmental education

Abstract

Heatwaves, defined as prolonged periods of excessive heat, are becoming more frequent and severe due to global climate change. These extreme heat events can have significant impacts on ecosystems and wildlife, particularly on avian fauna. Birds, as vital components of ecosystems, are highly susceptible to the adverse effects of heatwaves. Impacts directly attributable to adverse weather and changing climate regimes include a higher risk of mortality, reduced breeding success, compromised body condition and immunocompetence, declining populations, range changes, and potentially maladaptive behavioral adjustments in foraging, parental care, and migration. This vulnerability is exacerbated by the loss and degradation of their natural habitats, which hinders their ability to adapt to constantly changing climatic conditions. Understanding the vulnerability of bird populations during heatwaves is essential for devising effective conservation strategies. Conservation efforts should focus on preserving and restoring critical bird habitats, providing access to freshwater sources, and creating artificial shelters. Additionally, public education plays a significant role in raising awareness about the importance of bird conservation during heatwave events and in the broader context of climate change. In analyzing the subject, the study aims to provide more precise information to support the public decisions to be made, as well as to guide awareness for the implementation of conservation actions.

References

AGUILAR, J. M.; TINOCO, B. Ecología de polinización de Axinaea merianiae en una región de los altos Andes de Ecuador: Características de su néctar y aves polinizadoras. ACI Avances en Ciencias e Ingenierías, v. 9, n. 1, 2017, https://doi.org/10.18272/aci.v9i15.757.

ALBRIGHT, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proceedings of the National Academy of Sciences, v. 114, n. 9, p. 2283-2288, 2017, https://doi.org/10.1073/pnas.161362511.

AMBRÓSIO, L. A.; DE TOLEDO, L. M. Nexos entre bem-estar animal na pecuária e mudanças climáticas, no contexto do IPCC. Pubvet, v. 16, p. 102, 2022, https://doi.org/10.31533/pubvet.v16nsup1.a1308.1-5.

ANZANELLO, R. et al. Impacto de ondas de calor na dormência de gemas de videiras. Revista Brasileira de Fruticultura, v. 44, p. e-286, 2022, https://doi.org/10.1590/0100-29452022286.

BARRIENTO, C.; DUARTE, S. A conscientização para educação e planejamento de soltura de aves silvestres aplicados à população do bairro do Jardim Cumbica, município de Guarulhos-SP. Revista Monografias Ambientais, p. 1244-1247, 2012, https://doi.org/10.5902/223613084624.

BARROS, S. P.; PURIFICAÇÃO, K. N. Predação de sementes por Ara ararauna e Ara chloropterus (Aves: Psittacidae) em uma área urbana no Vale do Araguaia, Brasil. Acta Biológica Catarinense, v. 7, n. 1, p. 5-14, 2020.

BENITES, M.; MAMEDE, S. B. Mamíferos e aves como instrumentos de educação e conservação ambiental em corredores de biodiversidade do Cerrado, Brasil. Mastozoología neotropical, v. 15, n. 2, p. 261-271, 2008.

BITENCOURT, D. P. et al. Frequência, Duração, Abrangência Espacial e Intensidadedas Ondas de Calor no Brasil. Revista Brasileira de Meteorologia, v. 31, p. 506-517, 2016, https://doi.org/10.1590/0102-778631231420150077.

BITENCOURT, D. P. et al. The climatology of cold and heat waves in Brazil from 1961 to 2016. International Journal of Climatology, v. 40, n. 4, p. 2464-2478, 2020.

BOURNE, A. R. et al. Dehydration risk is associated with reduced nest attendance and hatching success in a cooperatively breeding bird, the southern pied babbler Turdoides bicolor. Conservation physiology, v. 9, n. 1, p. coab043, 2021, https://doi.org/10.1093/conphys/coab043.

BOURNE, A. R. et al. Hot droughts compromise interannual survival across all group sizes in a cooperatively breeding bird. Ecology Letters, v. 23, n. 12, p. 1776-1788, 2020, https://doi.org/10.1111/ele.13604.

CAPLLONCH, P.; ORTIZ, D.; SORIA, K. Importancia del litoral fluvial argentino como corredor migratorio de aves. INSUGEO, Miscelánea, v. 17, p. 107-120, 2008.

CONRADIE, S. R. et al. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proceedings of the National Academy of Sciences, v. 116, n. 28, p. 14065-14070, 2019, https://doi.org/10.1073/pnas.182131211.

CORRÊA, B. S.; LOUZADA, J. N. C. Bioma cerrado, fragmentação florestal e relações ecológicas com a avifauna. Revista Agrogeoambiental, 2010, https://doi.org/10.18406/2316-1817v2n32010284.

DA SILVA, C.; DO CARMO, R. S. Comportamento Allopreening entre urubu-de-cabeça-preta (Coragyps atratus) e caracará (Caracara plancus) no nordeste brasileiro. Atualidades Ornitológicas, v. 184, 2015.

DE LA FUENTE, A.; NAVARRO, A.; WILLIAMS, S. E. The climatic drivers of long‐term population changes in rainforest montane birds. Global Change Biology, v. 29, n. 8, p. 2132-2140, 2023, https://doi.org/10.1111/gcb.16608.

DE LIMA, A. M. X. Riqueza de espécies e ameaças à conservação das aves do Refúgio de Vida Silvestre dos Campos de Palmas, sul do Brasil. Revista científica do CEMAVE/ICMBio, v. 8, n. 2, p. 46-64, 2015.

DI BLASI, C. et al. Effects of temperatures and heatwaves on occupational injuries in the agricultural sector in Italy. International journal of environmental research and public health, v. 20, n. 4, p. 2781, 2023, https://doi.org/10.3390/ijerph20042781.

DUNN, P. O. et al. A test of the mismatch hypothesis: How is timing of reproduction related to food abundance in an aerial insectivore?. Ecology, v. 92, n. 2, p. 450-461, 2011, https://doi.org/10.1890/10-0478.1.

ELY, D. F.; KOGIMA, K. C. Índices térmicos para a identificação de ondas de calor aplicados ao estado do Paraná, Brasil. Geo UERJ, n. 34, p. 40947, 2019, https://doi.org/10.12957/geouerj.2019.40947.

FJELDSÅ, J.; IRESTEDT, M. DIVERSIFICATION OF THE SOUTH AMERICAN AVIFAUNA: PATTERNS AND IMPLICATIONS FOR CONSERVATION IN THE ANDES1. Annals of the Missouri Botanical Garden, v. 96, n. 3, p. 398-409, 2009, https://doi.org/10.3417/2007148.

GEIRINHAS, J. L. et al. Caracterização climática de ondas de calor no Brazil. Anuário do Instituto de Geociências-UFRJ, 2018, http://dx.doi.org/10.11137/2018_3_333_350.

GEIRINHAS, J. L. et al. Recent increasing frequency of compound summer drought and heatwaves in Southeast Brazil. Environmental Research Letters, v. 16, n. 3, p. 034036, 2021, https://doi.org/10.1088/1748-9326/abe0eb.

GILL, A. M. Economically destructive fires and biodiversity conservation: an Australian perspective. Conservation Biology, v. 15, n. 6, p. 1558-1560, 2001.

HOCKEY, P. A. R. et al. Interrogating recent range changes in South African birds: confounding signals from land use and climate change present a challenge for attribution. Diversity and Distributions, v. 17, n. 2, p. 254-261, 2011, https://doi.org/10.1111/j.1472-4642.2010.00741.x.

IKNAYAN, K. J.; BEISSINGER, S. R. Collapse of a desert bird community over the past century driven by climate change. Proceedings of the National Academy of Sciences, v. 115, n. 34, p. 8597-8602, 2018, https://doi.org/10.1073/pnas.180512311.

IM, E. S.; PAL, J. S.; ELTAHIR, E. A. B. Deadly heat waves projected in the densely populated agricultural regions of South Asia. Science advances, v. 3, n. 8, p. e1603322, 2017, DOI:10.1126/sciadv.1603322.

KIRWAN, G. M.; SHIRIHAI, H.; SCHWEIZER, M. A morphological revision of Mascarene Swiftlet Aerodramus francicus, with the description of a new subspecies from Reunion. Bulletin of the British Ornithologists’ Club, v. 138, n. 2, p. 117-130, 2018, https://doi.org/10.25226/bboc.v138i2.2018.a6.

MA, G.; RUDOLF, V. H. W; MA, C. Extreme temperature events alter demographic rates, relative fitness, and community structure. Global Change Biology, v. 21, n. 5, p. 1794-1808, 2015, https://doi.org/10.1111/gcb.12654.

MACWHIRTER, P. et al. Evolução das espécies aviárias. Tully T, Dorrestein GM, Jones AK. Clínica de aves. São Paulo: Elsevier, p. 1-21, 2010.

MAMEDE, S.; BENITES, M. Identificação e mapeamento dos hostspots para a observação de aves com base em indicadores socioambientais: roteirização turística de Campo Grande (MS). Revista Brasileira de Ecoturismo (RBEcotur), v. 13, n. 2, 2020, https://doi.org/10.34024/rbecotur.2020.v13.6817.

MARCON, A. P. Interações dos beija-flores e seus recursos florais em um ambiente antropizado no sul do Brasil. Atualidades Ornitológicas, v. 193, p. 18-24, 2016.

MARTENSEN, A. C.; PIMENTEL, R. G.; METZGER, J. P. Relative effects of fragment size and connectivity on bird community in the Atlantic Rain Forest: implications for conservation. Biological conservation, v. 141, n. 9, p. 2184-2192, 2008, https://doi.org/10.1016/j.biocon.2008.06.008.

MCKECHNIE, A. E.; WOLF, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biology letters, v. 6, n. 2, p. 253-256, 2010, https://doi.org/10.1098/rsbl.2009.0702.

MENEZES, L. N.; LUDWIG, P. R. Diversidade alimentar da Coruja-Buraqueira (Athene cunicularia) em ambiente antropomorfizado no município de Maracaí/SP. J Health Sci Inst, v. 31, n. 4, p. 347-350, 2013.

MÜLLER, A.; DE BARROS, M. P. Diversidade e abundância de aves costeiras em um trecho do litoral norte do Rio Grande do Sul, Brasil. Biotemas, v. 26, n. 3, p. 163-175, 2013.

NAUGLE, D. E. et al. A landscape approach to conserving wetland bird habitat in the prairie pothole region of eastern South Dakota. Wetlands, v. 21, n. 1, p. 1-17, 2001.

NOBRE, C. A. et al. Some characteristics and impacts of the drought and water crisis in Southeastern Brazil during 2014 and 2015. Journal of Water Resource and Protection, v. 8, n. 2, p. 252-262, 2016.

NOGUEIRA, P.; PAIXÃO, E.; MORAIS, L. Temperaturas do ar de Lisboa e Portugal (por distritos). Distribuições semanais e geográficas: modelos para previsão e monitorização dos impactos das ondas de calor na mortalidade humana. Portugal. Saúde em Números, n. 1, p. 8-18, 2013.

PADDA, S. S.; GLASS, J. R.; STAHLSCHMIDT, Z. R. When it's hot and dry: life-history strategy influences the effects of heat waves and water limitation. Journal of experimental biology, v. 224, n. 7, p. jeb236398, 2021, https://doi.org/10.1242/jeb.236398.

PAIXÃO, E. J.; NOGUEIRA, P. J. Efeitos de uma onda de calor na mortalidade. Revista Portuguesa de Saúde Pública, v. 21, n. 1, p. 41-54, 2003.

PERKINS-KIRKPATRICK, S. E.; LEWIS, S. C. Increasing trends in regional heatwaves. Nature communications, v. 11, n. 1, p. 3357, 2020, https://doi.org/10.1038/s41467-020-16970-7.

PIZO, M. A.; GALETTI, M. Métodos e perspectivas da frugivoria e dispersão de sementes por aves. Von Matter, S., Straube, FC, Piacentini, V., Cândido, Jr.(eds.), Ornitologia e conservação: ciência aplicada, técnicas de pesquisa e levantamento, p. 493-506, 2010.

PREVIATTO, D. M.; MIZOBE, R. S.; POSSO, S. R. Aves como potenciais polinizadoras de Spathodea nilotica (Bignoniaceae) em ambiente urbano. Brazilian Journal of Biology, v. 73, p. 737-741, 2013, https://doi.org/10.1590/S1519-69842013000400008.

QUERINO, C. A. S. et al. Balanço de ondas curtas sobre floresta sazonalmente alagável do Pantanal Mato-Grossense. Revista Brasileira de Climatologia, v. 20, 2017.

RIDDELL, E. A. et al. Cooling requirements fueled the collapse of a desert bird community from climate change. Proceedings of the National Academy of Sciences, v. 116, n. 43, p. 21609-21615, 2019, https://doi.org/10.1073/pnas.1908791116.

RIDDELL, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science, v. 371, n. 6529, p. 633-636, 2021, https://doi.org/10.1126/science.abd4605.

RODRIGUES, M.; MICHELIN, V. B. Riqueza e diversidade de aves aquáticas de uma lagoa natural no sudeste do Brasil. Revista Brasileira de Zoologia, v. 22, p. 928-935, 2005, https://doi.org/10.1590/S0101-81752005000400019.

ROOS, A. A biodiversidade e a extinção das espécies. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, p. 1494-1499, 2012.

RUAUX, G. et al. Drink safely: common swifts (Apus apus) dissipate mechanical energy to decrease flight speed before touch-and-go drinking. Journal of Experimental Biology, v. 226, n. 6, p. jeb244961, 2023, https://doi.org/10.1242/jeb.244961.

SAMPLONIUS, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Global change biology, v. 24, n. 8, p. 3780-3790, 2018, https://doi.org/10.1111/gcb.14160.

SANCHES, L. G. et al. Um estudo sobre a importância da espécie urubu-de-cabeça-preta para os alunos do Instituto Federal de Educação, Ciência e Tecnologia do Maranhão-Campus Codó. Brazilian Journal of Animal and Environmental Research, v. 3, n. 3, p. 1946-1955, 2020.

SANTOS, W. M.; ROSADO, F. R. Dados preliminares da biologia do gavião-carijó (Rupornis magnirostris, Gmelin, 1788) na região Noroeste do Paraná. Revista em Agronegócio e Meio Ambiente, v. 2, n. 3, p. 421-430, 2009.

ŞEKERCIOĞLU, Ç. H.; PRIMACK, R. B.; WORMWORTH, J. The effects of climate change on tropical birds. Biological conservation, v. 148, n. 1, p. 1-18, 2012, https://doi.org/10.1016/j.biocon.2011.10.019.

SHEAFFER, S. E. et al. Management implications of molt migration by the Atlantic flyway resident population of Canada geese, Branta canadensis. The Canadian Field-Naturalist, v. 121, n. 3, p. 313-320, 2007.

SHERRY, T. W. Sensitivity of tropical insectivorous birds to the Anthropocene: a review of multiple mechanisms and conservation implications. Frontiers in Ecology and Evolution, v. 9, p. 662873, 2021, https://doi.org/10.3389/fevo.2021.662873.

SILVA, N. S. et al. Occurrence of Heat Waves with Reanalysis Data in Areas of the Northeast, Amazon and Central-Southeast of Brazil. Revista Brasileira de Meteorologia, v. 37, p. 441-451, 2023, https://doi.org/10.1590/0102-77863740067.

SILVEIRA, I. H. et al. Heat waves and mortality in the Brazilian Amazon: Effect modification by heat wave characteristics, population subgroup, and cause of death. International Journal of Hygiene and Environmental Health, v. 248, p. 114109, 2023, https://doi.org/10.1016/j.ijheh.2022.114109.

SILVEIRA, R. et al. Ondas de calor nas capitais do Sul do Brasil e Montevidéu-Uruguai. Rev Bras Geogr Fis, v. 12, n. 4, p. 1259-1276, 2019.

SON, J. Y. et al. The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil. International journal of biometeorology, v. 60, p. 113-121, 2016.

SOUZA, F. L.; SANTOS, C. A. Climate and nest opening orientation in Furnarius rufus (Furnariidae). Iheringia. Série Zoologia, v. 97, p. 293-295, 2007.

SPOTSWOOD, E. N. et al. The biological deserts fallacy: cities in their landscapes contribute more than we think to regional biodiversity. Bioscience, v. 71, n. 2, p. 148-160, 2021, https://doi.org/10.1093/biosci/biaa155.

STEIL, M. et al. Identificação de episódios de ondas de calor e de frio atmosféricas na região central do litoral catarinense. Ciência e Natura, v. 42, p. e16-e16, 2020, https://doi.org/10.5902/2179460X55317.

STILLMAN, J. H. Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology, v. 34, n. 2, p. 86-100, 2019, https://doi.org/10.1152/physiol.00040.2018.

TALBOT, W. A. et al. Avian thermoregulation in the heat: metabolism, evaporative cooling and gular flutter in two small owls. Journal of Experimental Biology, v. 221, n. 12, p. jeb171108, 2018, https://doi.org/10.1242/jeb.171108.

TEIXEIRA, C.; DE OLIVEIRA, G. B. A importância da educação ambiental na preservação das aves no Parque das Acácias em Uberaba, MG. REMEA-Revista Eletrônica do Mestrado em Educação Ambiental, v. 40, n. 1, p. 310-331, 2023, https://doi.org/10.14295/remea.v40i1.13849.

TELLERÍA, J. L.; RAMÍREZ, Á.; PÉREZ-TRIS, J. Conservation of seed-dispersing migrant birds in Mediterranean habitats: shedding light on patterns to preserve processes. Biological Conservation, v. 124, n. 4, p. 493-502, 2005.

VALADÃO, R. M.; FRANCHIN, A. G.; JÚNIOR, O. M. A avifauna no Parque Municipal Victório Siquierolli, zona urbana de Uberlândia (MG). Revista Biotemas, v. 19, n. 1, p. 77-87, 2006.

VALVERDE, M. C.; ROSA, M. B. Heat waves in São Paulo State, Brazil: Intensity, duration, spatial scope, and atmospheric characteristics. International Journal of Climatology, 2023, https://doi.org/10.1002/joc.8058.

VIANNA, J. A. et al. Changes in abundance and distribution of Humboldt Penguin Spheniscus humboldti. Marine Ornithology, v. 42, p. 153-159, 2014.

VILLEGAS, M.; GARITANO-ZAVALA, A. Las comunidades de aves como indicadores ecológicos para programas de monitoreo ambiental en la ciudad de La Paz, Bolivia. Ecología en Bolivia, v. 43, n. 2, p. 146-153, 2008.

VOTIER, S. C.; SHERLEY, R. B. Seabirds. Current Biology, v. 27, n. 11, p. R448-R450, 2017.

WANJTAL, A.; SILVEIRA, L. F. A soltura de aves contribui para a sua conservação. Atualidades ornitológicas, v. 98, n. 7, p. 5-9, 2000.

WINTERS, G. et al. Effects of a simulated heat wave on photophysiology and gene expression of high-and low-latitude populations of Zostera marina. Marine Ecology Progress Series, v. 435, p. 83-95, 2011, https://doi.org/10.3354/meps09213.

ZHAO, Q. et al. The association between heatwaves and risk of hospitalization in Brazil: a nationwide time series study between 2000 and 2015. PLoS medicine, v. 16, n. 2, p. e1002753, 2019, https://doi.org/10.1371/journal.pmed.1002753.

Downloads

Published

2023-12-06

How to Cite

Costa, T. D., de Moraes, J. R. C., Timoteo, J. L., & Rosa, J. (2023). Evaluation of the vulnerability of wild bird populations during heatwave events: implications for biodiversity conservation. STUDIES IN HEALTH SCIENCES, 4(4), 1483–1502. https://doi.org/10.54022/shsv4n4-027