Mechanical instabilities of nano-composite plates using elasticity theories

Authors

  • Hafid Khetir
  • Abdelmoutalib Benfrid
  • Mohamed Bachir Bouiadjra
  • Rabie Zouaoui Harrat
  • Mohammed Chatbi

DOI:

https://doi.org/10.54021/seesv5n2-009

Keywords:

Mechanical Instability Analysis, Critical Buckling Loads, Carbon Nanotubes, Volume of CNT, Distribution of CNT, First Order Shear Theory (FSDT)

Abstract

This study examines the mechanical buckling behavior of a simply supported rectangular polymer plate reinforced with carbon nanotubes (CNTs) using an efficient first-order shear deformation theory (FSDT). The Hamiltonian principle derives the equilibrium equations of the nano-composite plate, while Navier solutions define the boundary conditions, creating a model to determine the critical buckling load (λcr). Various volume fractions (Vcnt = 0.11, 0.14, 0.17) and CNT distributions [uniform (UD) and functionally graded (FG-X, FG-O, FG-V)] are considered in this analysis. Model validation occurs through comparison with established scientific literature. Furthermore, the model applies to various parametric changes, such as variations in plate geometry, changes in matrix or reinforcement properties, carbon nanotube orientations, loading types (uniaxial/biaxial), and buckling modes.

References

AHMADI, M.; ANSARI, R.; ROUHI, H. Multi-scale bending, buckling and vibration analyses of carbon fiber/carbon nanotube-reinforced polymer nanocomposite plates with various shapes. Physica E: Low-dimensional Systems and Nanostructures, v. 93, p. 17-25, 2017/09/01/ 2017. doi: https://doi.org/10.1016/j.physe.2017.05.009.

AJAYAN, P. M.; ZHOU, O. Z. Applications of carbon nanotubes. Carbon nanotubes: synthesis, structure, properties, and applications, p. 391-425, 2001. doi: https://doi.org/10.1007/3-540-39947-X_14.

ARANI, A. G.; MAGHAMIKIA, S.; MOHAMMADIMEHR, M.; AREFMANESH, A. Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods. Journal of Mechanical Science and Technology, v. 25, n. 3, p. 809-820, 2011/03/01 2011. doi: https://doi.org/10.1007/s12206-011-0127-3.

BENBAKHTI A., B. A., HARRAT Z.R., CHATBI M., BOUIADJRA M.B., KROUR B. . An analytical analysis of the hydrostatic bending to design a wastewater treatment plant by a new advanced composite material. Revue des Composites et des Matériaux Avancés-Journal of Composite and Advanced Materials, v. 34, n. 2, p. 177-188, 2024. doi: https://doi.org/10.18280/rcma.340207.

BENFRID, A.; BENBAKHTI, A.; HARRAT, Z. R.; CHATBI, M. et al. Thermomechanical Analysis of Glass Powder Based Eco-concrete Panels: Limitations and Performance Evaluation. Periodica Polytechnica Civil Engineering, v. 67, n. 4, p. 1284-1297, 01/01 2023. doi: https://doi.org/10.3311/PPci.22781.

BERBER, M.; HAFEZ, I. H. Carbon nanotubes: current progress of their polymer composites. 2016.

CHANG, T.; GENG, J.; GUO, X. Chirality- and size-dependent elastic properties of single-walled carbon nanotubes. Applied Physics Letters, v. 87, n. 25, 2005. doi: https://doi.org/10.1063/1.2149216.

CHATBI, M.; HARRAT, Z. R.; GHAZOUL, T.; BACHIR BOUIADJRA, M. Free vibrational analysis of composite beams reinforced with randomly aligned and oriented carbon nanotubes, resting on an elastic foundation. Journal of Building Materials and Structures, v. 9, n. 1, p. 22-32, 02/21 2022. doi: https://doi.org/10.34118/jbms.v9i1.1895.

DENIZ, A.; FANTUZZI, N.; SOFIYEV, A. H.; KURUOGLU, N. Modeling and Solution of Large Amplitude Vibration Problem of Construction Elements Made of Nanocomposites Using Shear Deformation Theory. Materials, v. 14, n. 14, p. 3843, 2021. doi: https://doi.org/10.3390/ma14143843.

GARCÍA-MACÍAS, E.; RODRÍGUEZ-TEMBLEQUE, L.; SÁEZ, A. Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. Composite Structures, v. 186, p. 123-138, 2018/02/15/ 2018. doi: https://doi.org/10.1016/j.compstruct.2017.11.076.

HAN, Y.; ELLIOTT, J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Computational materials science, v. 39, n. 2, p. 315-323, 2007. doi: https://doi.org/10.1016/j.commatsci.2006.06.011.

HARRAT, Z. R.; CHATBI, M.; KROUR, B.; HADZIMA-NYARKO, M. et al. Modeling the Thermoelastic Bending of Ferric Oxide (Fe2O3) Nanoparticles-Enhanced RC Slabs. Materials, v. 16, n. 8, p. 3043, 2023. doi: https://doi.org/10.3390/ma16083043.

HARRIS, P. J. Carbon nanotubes and related structures: new materials for the twenty-first century. Cambridge university press, 2001. 0521005337.

JAFARI MEHRABADI, S.; SOBHANI ARAGH, B.; KHOSHKHAHESH, V.; TAHERPOUR, A. Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes. Composites Part B: Engineering, v. 43, n. 4, p. 2031-2040, 2012/06/01/ 2012. doi: https://doi.org/10.1016/j.compositesb.2012.01.067.

KARAMA, M.; AFAQ, K.; MISTOU, S. Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity. International Journal of solids and structures, v. 40, n. 6, p. 1525-1546, 2003. doi: https://doi.org/10.1016/S0020-7683(02)00647-9.

KECIR, A.; CHATBI, M.; HARRAT, Z. R.; BACHIR BOUIADJRA, M. et al. Enhancing the Mechanical Performance of Concrete Slabs through the Incorporation of Nano-sized Iron Oxide Particles (Fe2O3): Non-local Bending Analysis. Periodica Polytechnica Civil Engineering, v. 68, n. 3, p. 842-858, 01/01 2024. doi: https://doi.org/10.3311/PPci.23016.

LEI, Z. X.; LIEW, K. M.; YU, J. L. Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method. Composite Structures, v. 98, p. 160-168, 2013/04/01/ 2013. doi: https://doi.org/10.1016/j.compstruct.2012.11.006.

LEI, Z. X.; ZHANG, L. W.; LIEW, K. M. Buckling analysis of CNT reinforced functionally graded laminated composite plates. Composite Structures, v. 152, p. 62-73, 2016/09/15/ 2016. doi: https://doi.org/10.1016/j.compstruct.2016.05.047.

LIEW, K. M.; YAN, J. W.; SUN, Y. Z.; HE, L. H. Investigation of temperature effect on the mechanical properties of single-walled carbon nanotubes. Composite Structures, v. 93, n. 9, p. 2208-2212, 2011/08/01/ 2011. doi: https://doi.org/10.1016/j.compstruct.2011.03.007.

MALEKZADEH, P.; SHOJAEE, M. Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers. Thin-Walled Structures, v. 71, p. 108-118, 2013/10/01/ 2013. doi: https://doi.org/10.1016/j.tws.2013.05.008.

MEHAR, K.; PANDA, S. K. Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation. Advances in Polymer Technology, v. 37, n. 6, p. 1643-1657, 2018. doi: https://doi.org/10.1002/adv.21821.

REDDY, B. S.; KUMAR, J. S.; REDDY, C. E.; REDDY, K. V. K. Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory. Journal of Composites, v. 2013, n. 1, p. 808764, 2013. doi: https://doi.org/10.1155/2013/808764.

REDDY, J. A general non-linear third-order theory of plates with moderate thickness. International Journal of Non-Linear Mechanics, v. 25, n. 6, p. 677-686, 1990. doi: https://doi.org/10.1016/0020-7462(90)90006-U.

REICH, S.; THOMSEN, C.; MAULTZSCH, J. Carbon nanotubes: basic concepts and physical properties. John Wiley & Sons, 2008. 3527618058.

SHEN, H.-S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures, v. 91, n. 1, p. 9-19, 2009/11/01/ 2009. doi: https://doi.org/10.1016/j.compstruct.2009.04.026.

SONG, Y. S.; YOUN, J. R. Modeling of effective elastic properties for polymer based carbon nanotube composites. Polymer, v. 47, n. 5, p. 1741-1748, 2006/02/22/ 2006. doi: https://doi.org/10.1016/j.polymer.2006.01.013.

THAI, H.-T.; VO, T. P. A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates. Applied mathematical modelling, v. 37, n. 5, p. 3269-3281, 2013. doi: https://doi.org/10.1016/j.apm.2012.08.008.

WATTANASAKULPONG, N.; CHAIKITTIRATANA, A. Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation. Applied Mathematical Modelling, v. 39, n. 18, p. 5459-5472, 2015/09/15/ 2015. doi: https://doi.org/10.1016/j.apm.2014.12.058.

WHITNEY, J. Shear correction factors for orthotropic laminates under static load. 1973. doi: https://doi.org/10.1115/1.3422950.

YELLAMPALLI, S. Carbon nanotubes: polymer nanocomposites. BoD–Books on Demand, 2011. 9533074981.

ZHANG, C.-L.; SHEN, H.-S. Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation. Applied Physics Letters, v. 89, n. 8, 2006. doi: https://doi.org/10.1063/1.2336622.

ZHANG, L. W.; LEI, Z. X.; LIEW, K. M. Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method. Composite Structures, v. 120, p. 189-199, 2015/02/01/ 2015. doi: https://doi.org/10.1016/j.compstruct.2014.10.009.

ZHU, P.; LEI, Z. X.; LIEW, K. M. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Composite Structures, v. 94, n. 4, p. 1450-1460, 2012/03/01/ 2012. doi: https://doi.org/10.1016/j.compstruct.2011.11.010.

Published

2024-07-03

How to Cite

Khetir, H., Benfrid , A., Bouiadjra, M. B., Harrat, R. Z., & Chatbi, M. (2024). Mechanical instabilities of nano-composite plates using elasticity theories. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(2), e5409. https://doi.org/10.54021/seesv5n2-009