A new robust controller based on type-1 fuzzy logic and IP regulator for induction motor

Authors

  • Abdelghafour Herizi Herizi
  • Riyadh Rouabhi
  • Fayssal Ouagueni
  • Abderrahim Zemmit
  • Abdelhafid Benyounes

DOI:

https://doi.org/10.54021/seesv5n1-162

Keywords:

induction motor, type-1 fuzzy logic, proportional integral, vector control, hybrid control

Abstract

The novelty of the work proposed a new controller based on type 1 fuzzy logic and IP regulator, the new controller applies to the asynchronous machine driven by a PWM inverter. Flux-directed vector control is considered one of the most effective control methods due to its ease of design and implementation. Proportional integral (PI) controllers are used to implement this method. The controllers parameters are calculated using traditional analytical methods directly from the machine parameters. This requires rigorous calculation and a thorough understanding of all machine parameters. Improve the performance of flow-oriented vector control (reduction of oscillations, driving of loads at variable speeds, etc.). The performance improvement was achieved firstly by changing the location of the proportional and integral regulators. Then, by a regulator that combines the integral proportional (IP) regulator and type 1 fuzzy logic in the MATLAB environment. A new architecture of the flow-oriented vector control controller, based on the combination between the IP regulator and type 1 fuzzy logic. The control makes it possible to improve the dynamic performance of the induction motor. The main possibility of creating an efficient controller based on the fuzzy logic of type 1 of the induction motor.

References

HERIZI, A.; ROUABHI, R.; ZEMMIT, A. Speed control of doubly fed induction motor using backstepping control with interval type-2 fuzzy controller. Diagnostyka, v. 24, n. 3, p. 1-8, 2023. https://doi:10.29354/diag/166460.

LEKHCHINE, S.; BAHI, T.; ABADLIA, I.; BOUZERIA, H. PV-battery energy storage system operating of asynchronous motor driven by using fuzzy sliding mode control. International journal of hydrogen energy, v. 42, n. 13, p. 8756-8764, 2017. https://doi:10.1016/j.ijhydene.2016.05.298.

CHENG, J.; XIONG, Y. Application of teaching-learning-based optimization algorithm in rotor fault diagnosis for asynchronous motor. Procedia computer science, v. 131, p. 1275-1281, 2018. https://doi:10.1016/j.procs.2018.04.341.

KRIM, S.; MIMOUNI, M. F. Design of improved direct torque control based on a five level torque controller and a new Sugeno-Takagi fuzzy super-twisting controller applied to an induction machine. Engineering applications of artificial intelligence, v. 126, p. 106900, 2023. https://doi:10.1016/j.engappai.2023.

SAMI, I.; ULLAH, S.; BASIT, A.; ULLAH, N.; RO, J. S. Integral super twisting sliding mode based sensorless predictive torque control of induction motor. IEEE Access, v. 8, p. 186740-186755, 2020. https://doi:10.1109/ACCESS.2020.

SABZALIAN, M. H.; MOHAMMADZADEH, A. A new robust control for induction motors. IETE journal of research, v. 68, n. 2, p. 1168-1176, 2022. https://doi:10.1080/03772063.2019.1643265.

SABZALIAN, M. H.; MOHAMMADZADEH, A.; SHUYI, L.; WEIDONG, Z. A robust control of a class of induction motors using rough type-2 fuzzy neural networks. Soft Computing, v. 24, p. 9809-9819, 2020. https://doi:10.1007/s0050

-019-04493-3.

AMMAR, A.; BOUREK, A.; BENAKCHA, A. Nonlinear svm-dtc for induction motor drive using input–output feedback linearization and high order sliding mode control. ISA Transactions, v. 67, p. 428-442, 2017. https://doi:10.1016/j.isatra.

01.010.

MANNAN, M. A.; ISLAM, A.; UDDIN, M. N.; HASSAN, M. K.; MURATA, T.; TAMURA, J. Fuzzy-Logic Based Speed Control of Induction Motor Considering Core Loss into Account. Intelligent Control and Automation, v. 3, n. 3, p. 229-235, 2012. https://doi:10.4236/ica.2012.33026.

ELLABBAN, O.; MIERLO, J. V.; LATAIRE, P. A new closed loop speed control of induction motor fed by a high performance Z-source inverter. IEEE Electrical Power & Energy Conference, Halifax, NS, Canada, p. 1-6, 2010. https://doi:10.1109/EPEC.2010.5697194.

LOKRITI, A.; SALHI, I.; DOUBABI, S. IM direct torque control with no flux distortion and no static torque error. ISA Transactions, v. 59, p. 256-267, 2015. https://doi:10.1016/j.isatra.2015.08.014.

EL OUANJLI, N.; MAHFOUD, S.; AL-SUMAITI, A. S.; EL DAOUDI, S.; DEROUICH, A.; El MAHFOUD, M.; MOSSA, M. A. Improved twelve sectors DTC strategy of induction motor drive using Backstepping speed controller and P-MRAS stator resistance identification-design and validation. Alexandria Engineering Journal, v. 80, p. 358-371, 2023. https://doi:10.1016/j.aej.2023.08.077.

YING, L.; SHANMEI, C.; BOWEN, N.; YESONG, L. Stator flux estimation with vector transforming and signal filtering method for electrical machines. IET Power Electronics, v. 11, n. 2, p. 357-363, 2018. https://doi:10.1049/iet-pel.2017.0331.

AKTAS, M.; AWAILI, K.; EHSANI, M.; ARISOY, A. Direct torque control versus indirect field-oriented control of induction motors for electric vehicle applications. Engineering Science and Technology, an International Journal, v. 5, p. 1134-1143, 2023. https://doi:10.1016/j.jestch.2020.04.002.

OHM, D. Y. Dynamic model of induction motors for control vector. Drivetech, Inc. Blacksburg, Virginia. 2000.

YOUSFI, L.; BOUCHEMHA, A.; BECHOUAT, M.; BOUKROUCHE, A. Vector control of induction machine using PI controller optimized by genetic algorithms. 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, 2014. p. 1272-1277. https://doi:10.1109/EPEPE

MC.2014.6980687.

DUALIBE, C.; VERLEYSEN, M.; JESPERS, P.G.A. Design of analog fuzzy logic controllers in CMOS technologies. Kluwer Academic Publishers, New York, 2023.

LOWEN, R.; VERSCHOREN, A. Foundations of generic optimization: applications of fuzzy control, genetic algorithms and neural networks. Springer, 2008. v. 2.

OUAGUENI, F.; BOUREGUIG K.; HERIZI, A. A new fuzzy adaptive PID controller approach design for solid oxyde fuel cell power plant. NeuroQuantology, v. 21, n. 6, p. 2049-2060, 2023. https://doi:10.48047/nq.2023.

6.nq23204.

HAMDI PACHA, F.Z.; HERIZI A.; FEZAI, N.; BEN AMOR, A. Intelligent monitoring of PMSM based on adaptive fuzzy logic for diagnosis. Przegląd Elektrotechniczny, v. 99, n. 4, p. 241-246, 2023. https://doi:10.15199/48.2023.

42.

HERIZI, A.; ROUABHI R.; ZEMMIT, A. Comparative study of the performance of a sliding, sliding-fuzzy type 1 and a sliding-fuzzy type 2 control of a permanent magnet synchronous machine. Przegląd Elektrotechniczny, v. 98, n. 11, p. 21-29, 2022. https://doi:10.15199/48.2022.11.03.

HERIZI, A.; BENYOUNES, A.; ROUABHI, R., BOUDRAS, A.; OUAGUENI, F.; ZEMMIT, A. Robust fuzzy – backstepping mode control of an induction motor", Studies in Engineering and Exact Sciences, v. 5, n. 1, p. 1317-1334, 2024. https://doi:10.54021/seesv5n1-068

Downloads

Published

2024-06-22

How to Cite

Herizi, A. H., Rouabhi, R., Ouagueni, F., Zemmit, A., & Benyounes, A. (2024). A new robust controller based on type-1 fuzzy logic and IP regulator for induction motor. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 3268–3285. https://doi.org/10.54021/seesv5n1-162

Most read articles by the same author(s)