Intelligent fault detection of photovoltaic panel using neural networks

Authors

  • Mohammed Bouzidi
  • Mohamed Ben Rahmoune
  • Abdelfatah Nasri

DOI:

https://doi.org/10.54021/seesv5n1-157

Keywords:

PV panel, fault diagnosis, artificial neural networks, power faults, residual

Abstract

This research primarily aims to leverage artificial neural network technology for diagnosing power output issues in photovoltaic (PV) panels stemming from fluctuations in solar irradiance and temperature. The proposed diagnostic approach relies on constructing a reference model that captures the expected normal operating behavior of the PV panel under fault-free conditions. This reference model is then compared against the actual power output, and the difference, known as the residual, is analyzed to detect potential faults. The neural network is trained using real-world data inputs like solar irradiance and temperature measurements, with the sole output being the power produced by the PV panel. Through training, the neural network learns to map the complex non-linear relationships between environmental inputs and expected power output, effectively modeling the PV system's intrinsic behavior under healthy conditions. Results demonstrate the neural network-based approach's remarkable ability to diagnose faults with high accuracy while avoiding potential non-linear complications. This intelligent monitoring system provides a reliable protocol for early fault detection through training on actual measurements, eliminating the need for complex mathematical models. Consequently, it streamlines the maintenance process by negating intricate procedures to identify PV panel issues. The neural network effectively learns the mapping between environmental conditions and expected power output through exposure to real-world data during training. By analyzing deviations from this learned mapping, represented by the residual signal, the approach can reliably detect anomalies indicative of faults or performance degradation in the PV system. This data-driven nature allows the system to adapt to site-specific characteristics and capture non-linear effects without explicit modeling.

References

AL-DAMOOK, M.; WALEED ABID, K.; MUMTAZ, A.; DIXON-HARDY, D.; HEGGS, P. J.; AL QUBEISSI, M. Photovoltaic module efficiency evaluation: The case of Iraq. Alexandria Engineering Journal, v. 61, p. 6151–6168, 2022. https://doi.org/10.1016/j.aej.2021.11.046

ALONSO-GARCIA, M.; BALENZATEGUI, J. 2004. Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations. Renewable Energy, v. 29, p. 1997–2010. https://doi.org/10.1016/j.renene.2004.03.010

BADRAN, A. A.; OBEIDAT, F. A. 2022. Solar Hot Water Heating and Electricity Generation Using PV/T Hybrid System. J. Ecol. Eng., v. 23, p. 196–206. https://doi.org/10.12911/22998993/146783

BOUZIDI, M.; ABDELKADER, H.; MANSOURI, S.; DUMBRAVA, V. 2022a. Modeling of a Photovoltaic Array with Maximum Power Point Tracking Using Neural Networks. Applied Mechanics and Materials, v. 905, p. 53–64. https://doi.org/10.4028/p-ndl3bi

BOUZIDI, M.; BEN RAHMOUNE, M.; NASRI, A.; MANSOURI, S.; HAMOUDA, M. 2024. Extracting electrical parameters of solar cells using Lambert function. Diagnostyka, v. 25, p. 1–8. https://doi.org/10.29354/diag/188466

BOUZIDI, M.; HARROUZ, A.; MOHAMMED, T.; MANSOURI, S. 2021a. Short and open circuit faults study in the PV system inverter. International Journal of Power Electronics and Drive Systems (IJPEDS), v. 12, p. 1764–1771. https://doi.org/10.11591/ijpeds.v12.i3.pp1764-1771

BOUZIDI, M.; HARROUZ, A.; MOHAMMED, T.; MANSOURI, S. 2021b. Short and open circuit faults study in the PV system inverter. International Journal of Power Electronics and Drive Systems (IJPEDS), v. 12, p. 1764. https://doi.org/10.11591/ijpeds.v12.i3.pp1764-1771

BOUZNIT, M.; PABLO-ROMERO, M. DEL P.; SÁNCHEZ-BRAZA, A. 2020. Measures to Promote Renewable Energy for Electricity Generation in Algeria. Sustainability, v. 12, p. 1468. https://doi.org/10.3390/su12041468

BOYLE, G. 2012. Renewable Energy: Power for a Sustainable Future (3rd ed.). Oxford University Press and Open University, Oxford.

ELBACHIR, K. M.; AHMED, A. 2021. Artificial Neural Networks Direct Torque Control of Single Inverter Feed Two Induction Motors. JESA, v. 54, p. 881–889. https://doi.org/10.18280/jesa.540610

FARGHALI, M.; OSMAN, A.I.; CHEN, Z.; ABDELHALEEM, A.; IHARA, I.; MOHAMED, I. M. A.; YAP, P.-S.; ROONEY, D. W. 2023. Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review. Environ Chem Lett, v. 21, p. 1381–1418. https://doi.org/10.1007/s10311-023-01587-1

GOKMEN, N.; KARATEPE, E.; SILVESTRE, S.; CELIK, B.; ORTEGA, P. 2013. An efficient fault diagnosis method for PV systems based on operating voltage-window. Energy Conversion and Management, v. 73, p. 350–360. https://doi.org/10.1016/j.enconman.2013.05.015

KAVLAK, G.; MCNERNEY, J.; TRANCIK, J. E. 2018. Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy, v. 123, p. 700–710. https://doi.org/10.1016/j.enpol.2018.08.015

MANSOURI, M.; TRABELSI, M.; NOUNOU, H.; NOUNOU, M. 2021. Deep Learning-Based Fault Diagnosis of Photovoltaic Systems: A Comprehensive Review and Enhancement Prospects. IEEE Access, v. 9, p. 126286–126306. https://doi.org/10.1109/ACCESS.2021.3110947

MOHAMMED, B.; SMAIL, M.; ABDELKADER, H.; OULEDALLI, O. 2023. Detecting Faults In Photovoltaic Panels And Diagnosing Them Using Hybrid Artificial Intelligence. p. 1–10. https://doi.org/10.1109/ICETS60996.2023.10410712

MOHD AMIRUDDIN, A. A. A.; ZABIRI, H.; TAQVI, S. A. A.; TUFA, L. D. 2020a. Neural network applications in fault diagnosis and detection: an overview of implementations in engineering-related systems. Neural Comput & Applic, v. 32, p. 447–472. https://doi.org/10.1007/s00521-018-3911-5

MOHD AMIRUDDIN, A. A. A.; ZABIRI, H.; TAQVI, S. A. A.; TUFA, L. D. 2020b. Neural network applications in fault diagnosis and detection: an overview of implementations in engineering-related systems. Neural Comput & Applic, v. 32, p. 447–472. https://doi.org/10.1007/s00521-018-3911-5

OLUJOBI, O. J.; OKORIE, U. E.; OLARINDE, E. S.; AINA-PELEMO, A. D. 2023. Legal responses to energy security and sustainability in Nigeria’s power sector amidst fossil fuel disruptions and low carbon energy transition. Heliyon, v. 9, p. e17912. https://doi.org/10.1016/j.heliyon.2023.e17912

OSMANI, K.; HADDAD, A.; LEMENAND, T.; CASTANIER, B.; ALKHEDHER, M.; RAMADAN, M. 2023. A critical review of PV systems’ faults with the relevant detection methods. Energy Nexus, v. 12, p. 100257. https://doi.org/10.1016/j.nexus.2023.100257

RAHMOUNE, M. B.; IRATNI, A.; AMARI, A. S.; HAFAIFA, A.; COLAK, I. 2023. Fault detection and diagnosis of photovoltaic system based on neural networks approach. Diagnostyka, v. 24, p. 1–10. https://doi.org/10.29354/diag/166428

SOLAR Energy and the Global Energy Transition: Impact and Potential [WWW Document], 2023. Republic Of Solar. URL https://arka360.com/ros/solar-energy-global-transition/ (accessed 3.15.24).

SOOMAR, A. M.; HAKEEM, A.; MESSAOUDI, M.; MUSZNICKI, P.; IQBAL, A.; CZAPP, S. 2022. Solar Photovoltaic Energy Optimization and Challenges. Front. Energy Res., v. 10. https://doi.org/10.3389/fenrg.2022.879985

STRIELKOWSKI, W.; CIVÍN, L.; TARKHANOVA, E.; TVARONAVIČIENĖ, M.; PETRENKO, Y. 2021. Renewable Energy in the Sustainable Development of Electrical Power Sector: A Review. Energies, v. 14, p. 8240. https://doi.org/10.

/en14248240

VICTORIA, M.; HAEGEL, N.; PETERS, I. M.; SINTON, R.; JÄGER-WALDAU, A.; DEL CAÑIZO, C.; BREYER, C.; STOCKS, M.; BLAKERS, A.; KAIZUKA, I.; KOMOTO, K.; SMETS, A. 2021. Solar photovoltaics is ready to power a sustainable future. Joule, v. 5, p. 1041–1056. https://doi.org/10.1016/j.joule.2021.

005

Downloads

Published

2024-06-19

How to Cite

Bouzidi, M., Rahmoune, M. B., & Nasri, A. (2024). Intelligent fault detection of photovoltaic panel using neural networks. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 3161–3177. https://doi.org/10.54021/seesv5n1-157