Effect of the incorporation of plastic waste on the mechanical properties of composite materials

Authors

  • Omar Safer
  • Ouaddah Chaib
  • Adda Hadj Mostefa
  • Mouloud Dahmane
  • Adem Ait Mohamed Amer
  • Mohamed Salhi
  • Mourad Benadouda
  • Noureddine Latroch
  • Abdelkader Safa

DOI:

https://doi.org/10.54021/seesv5n1-125

Keywords:

plastic waste, concrete, fresh state, hardened state, mechanical properties, ANSYS-workbench

Abstract

Through this scientific research, we have tried to study the effect of the incorporation of plastic waste on the mechanical properties of concrete, in order to obtain good concrete with high resistance at a lower cost. To carry out this work, we adopted the following steps: Knowledge of the properties of concrete, which contains plastic waste of High Density Polyethylene (HDPE). Thus, the natural aggregate was replaced by concrete formulated with plastic waste in partial substitution varying between 0%, 10% and 20%. In all the concrete mixtures, the components, water, cement, gravel 3/8 and 8/15 and sand 0/3, remained constant while the HDPE waste varied according to the substitution rate. Through this process, the mechanical properties of concrete in fresh and hardened states were determined. The analysis of the results of the study allowed us to know the incorporation of plastic waste and its effect on the behaviour of the manufactured concrete. The results showed that the density of concrete made from plastic waste is lighter than the reference concrete without waste (C0), which contains only natural aggregates, in a fresh state. In the case of hardening, the results showed a decrease in the compressive strength of composite concrete produced from plastic waste compared to (C0) the reference concrete. In the study's second part, a numerical model for precision and effectiveness is constructed using the finite element (FE) method. Furthermore, manufacturing experiments are scheduled to use computer simulations that account for labour, materials, tests, and time. The nonlinear stress-strain relationship for time-dependent concrete deformations and tension cracks presents a challenge for concrete modelling. ANSYS software is used to use three-dimensional nonlinear finite elements in order to determine this kind of complex mechanical behavior.

References

ABDULRAHMANE, M.; MOHAMMED ALI, T.; RADJAB, N.; HILAL, N. Mechanical Properties of Concrete and Mortar Containing Low Density Polyethylene Waste Particles as Fine Aggregate. Journal of Materials and Engineering Structures, v. 7, n. 1, p. 57–72, 2020.

AFNOR. Granulats – Spécifications et textes réglementaires. Paris, France, 2015. t. 1.

AFNOR. NF EN 12350-2. Essais pour béton frais. Partie 2: Essai d'affaissement. Paris, France, 2012.

AFNOR. NF EN 12350-6. Essais pour béton frais – Partie 6: masse volumique. Paris, France, 2012.

AFNOR. NF EN 12390-3. Essais pour béton durci – Partie 3: résistance à la compression des éprouvettes. Paris, France, 2012.

AFNOR. NF EN 12390-6. Essais pour béton durci – Partie 6: détermination de la résistance en traction par fendage d'éprouvettes. Paris, France, 2012.

AIT MOHAMED AMER, A.; EZZIANE, K.; BOUGARA, A.; ADJOUDJ, M. Rheological and mechanical behavior of concrete made with pre-saturated and dried recycled concrete aggregates. Construction and Building Materials, v. 123, p. 300–308, 2016. http://dx.doi.org/10.1016/j.conbuildmat.2016.06.107 DOI: https://doi.org/10.1016/j.conbuildmat.2016.06.107

] AIT MOHAMED AMER, A.; EZZIANE, K.; ADJOUDJ, M. Evaluation of coarse recycled concrete aggregates effect on the properties of fresh and hardened concrete. Asian Journal of Civil Engineering, 2021. https://doi.org/10.1007/s42107-021-00373-0 DOI: https://doi.org/10.1007/s42107-021-00373-0

ALANI, A. H.; BUNNORI, N. M.; NOAMAN, A.T.; MAJID, T.A. Durability performance of a novel ultra-high-performance PET green concrete (UHPPGC). Construction and Building Materials, v. 209, p. 395–405, 2019. doi:10.1016/j.conbuildmat.2019.03.088. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.088

ALDAHDOOH, M. A. A.; JAMRAH, A.; ALNUAIMI, A.; MARTINI, M. I.; AHMED, M. S. R.; AHMED, A. S. R. Influence of various plastics-waste aggregates on properties of normal concrete. Journal of Building Engineering, v. 17, p. 13–22, 2018. doi:10.1016/j.jobe.2018.01.014

ALDAHDOOH, M. A. A.; JAMRAH, A.; ALNUAIMI, A.; MARTINI, M. I.; AHMED, M. S. R.; AHMED, A. S. R. Influence of various plastics-waste aggregates on properties of normal concrete. Journal of Building Engineering, v. 17, p. 13–22, 2018. doi.org/10.1016/j.jobe.2018.01.014 DOI: https://doi.org/10.1016/j.jobe.2018.01.014

ALFAHDAWI, H.; OSMAN, S.; HAMID, R.; AL-HADITHI, A. Influence of PET wastes on the environment and high strength concrete properties exposed to high temperatures. Construction and Building Materials, v. 225, p. 358–370, 2019. DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.214

ALI, M. R.; MASLEHUDDIN, M.; SHAMEEM, M.; BARRY, M. S. Thermal-resistant lightweight concrete with polyethylene beads as coarse aggregates. Construction and Building Materials, v. 164, p. 739–749, 2018. doi:10.1016/j.conbuildmat.2018.01.012 DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.012

ALMESHAL, I.; TAYEH, B.; ALYOUSEF, R.; ALABDULJABBAR, H.; MOHAMED, A.; ALASKAR, A. Use of recycled plastic as fine aggregate in cementitious composites: A review, Construction and Building Materials, v. 253,119146, 2020. doi.org/10.1016/j.conbuildmat.2020.119146 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119146

ANSYS Release 15.0, Mechanical User’s Guide, 2013.

ALQAHTANI, F. K.; GHATAORA, G.; KHAN, M. I.; DIRAR, S. Novel lightweight concrete containing manufactured plasticaggregate. Construction and Building Materials, v. 148, p. 386–397, 2017. doi:10.1016/j.conbuildmat.2017.05.011. DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.011

ALPEREN, H.; ŞAHIN, R.; A study on mechanical properties of polymer concrete containing electronic plastic waste. Composite Structures, v. 178, p. 50–62, 2017. doi:10.1016/j.compstruct.2017.06.058

ASTM C330 / C330M-14, Standard Specification for Lightweight Aggregates for Structural Concrete, ASTM International West Conshohocken, PA, 2014.

ASTM C597-16, Standard test method for pulse velocity through concrete, annual book of ASTM standards, vol.04, ASTM International West Conshohocken, PA, 2002.

AZHDARPOUR, A. M.; NIKOUDEL, M. R.; TAHERI, M. The effect of using polyethylene terephthalate particles on physical and strength-related properties of concrete; a laboratory evaluation. Construction and Building Materials, v. 109, p. 55–62. 2016. doi:10.1016/j.conbuildmat.2016.01.056. DOI: https://doi.org/10.1016/j.conbuildmat.2016.01.056

BELGUESMIA, K.; BELAS, N.; AMIRI, O.; LEKLOU, N. BELARIBI, O. Influence of treated sediment substitution percentage on workability, strength, and porosity of SCC. Journal of Materials and Engineering Structures, v. 5, p. 47–55. (In French), 2018.

BELGUESMIA, K.; Optimization of an eco-SCC based on dredged sediments with respect to fresh, hardened and durability. Thesis, Mostaganem, Algeria. (In French), 2018.

BELARIBI, O.; SAFER, O.; BELAS, N.; BELGUESMIA, K., HADJ SADOK, R. Influence of perlite on the mechanical behavior, capillary absorption and thermal conductivity of mortars. The Journal of Engineering and Exact Sciences – jCEC, v. 10, 3, 2024. https://doi.org/10.18540/jcecvl10iss3pp18800 DOI: https://doi.org/10.18540/jcecvl10iss3pp18800

BELAS, N.; BESSEGHIER, N.; MEBROUKI, A.; BOUHAMOU, N. To words a protection of the environment by valorizing the silt of stopping as concrete component. Matériaux & Techniques, v. 97,4, p. 231–240, 2009. https://doi.org/10.1051/mattech/2009039 DOI: https://doi.org/10.1051/mattech/2009039

BENIMAM, S.; DEBIEB, F.; BENTCHIKOU, M.; GUENDOUZ, M. Valorisation et Recyclage des Déchets Plastiques dans le Béton. MATEC Web of Conferences, v. 11, p. 01033, 2014. DOI: 10.1051/matecconf/20141101033 DOI: https://doi.org/10.1051/matecconf/20141101033

BELMOKADDEM, M.; MAHI, A.; SENHADJI, Y.; PEKMEZCI, B. Y. Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate. Construction and Building Materials, v, 257, 119559, 2020. doi: 10.1016/j.conbuildmat.2020.119559 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119559

Brink, P.; Schweitzer, J.P.; Watkins, E., Janssens, C., De Smet, M., Leslie, H., Galgani, F. Circular economy measures to keep plastics and their value in the economy, avoid waste and reduce marine litter. Economics, v. 3, p. 1–14, 2018.

BHOGAYATA, A. C.; ARORA, N. K. Fresh and strength properties of concrete reinforced with metalized plastic waste fibers. Construction and Building Materials, v. 146, p. 455–463, 2017. doi: 10.1016/j.conbuildmat.2017.04.095

BLAIR, R. M.; WALDRON, S.; PHOENIX, V.; GAUCHOTTE-LINDSAY, C. Microscopy and elemental analysis characterization of micro plastics in sediment of a freshwater urban river in Scotland, UK. Environmental Science and Pollution Research, v. 26,12, p. 12491–12504, 2019. https://doi.org/10.1007/s11356-019-04678-1 DOI: https://doi.org/10.1007/s11356-019-04678-1

BULUT, H. A.; ŞAHIN, R. A study on mechanical properties of polymer concrete containing electronic plastic waste. Composite Structures, v. 178 p. 50–62, 2017. doi: 10.1016/j.compstruct.2017.06.058. DOI: https://doi.org/10.1016/j.compstruct.2017.06.058

BOUCEDRA, A.; BEDERINA, M.; GHERNOUTI, Y. Study of the acoustical and thermo-mechanical properties of dune and river sand concretes containing recycled plastic aggregates. Construction and Building Materials, v. 256, 119447, 2020. doi: 10.1016/j.conbuildmat. 2020.119447.

BOUCEDRA, A., BEDERINA, M.; GHERNOUTI, Y. Study of the acoustical and thermo- mechanical properties of dune and river sand concretes containing recycled plastic aggregates. Construction and Building Materials, v. 256, 119447, 2020. doi.org/10.1016/j.conbuildmat.2020.119447 DOI: https://doi.org/10.1016/j.conbuildmat.2020.119447

BAHIJ, S.; OMARY, S.; FEUGEAS, F.; Faqiri, A. Fresh and hardened properties of concrete containing different forms of plastic waste – A review. Waste Management, v. 113, p. 157–175, 2020. doi: 10.1016/j.wasman.2020.05.048 DOI: https://doi.org/10.1016/j.wasman.2020.05.048

BOUZIADI, F.; BOULEKBACHE, B.; HADDI, A., DJELAL, C., HAMRAT, M. Numerical analysis of shrinkage of steel fiber reinforced high-strength concrete subjected to thermal loading, Construction and Building Materials, v. 181, p. 381–393, 2018. Doi: 10.1016/j.conbuildmat.2018.06.054 DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.054

BHOGAYATA, A.; ARORA, N. Fresh and strength properties of concrete reinforced with metalized plastic waste fibers. Construction and Building Materials, v. 146, p. 455– 463, 2017. doi: 10.1016/j.conbuildmat.2017.11.135 DOI: https://doi.org/10.1016/j.conbuildmat.2017.04.095

CHAIB, O.; SAFER, O.; DIF, F. Mechanical Behavior and Durability of Perlite Based Mortar Exposed to Sodium Sulfate Attack. Materials Science (MEDŽIAGOTYRA), 2024. http://doi.org/10.5755/j02.ms.34760. DOI: https://doi.org/10.5755/j02.ms.34760

CHEMMAMI, A.; AOUR, B.; ZAHAF, S.; DAHMANE, M. Biomechanical comparison of three total artificial discs: sb-charite iii®, prodisc-l® and maverick® reinforced by a posterior fixation system in the spinal column: a three-dimensional finite element analysis, Structural Integrity and Life, v. 21, 1, p. 65–83, 2021. Doi: divk.inovacionicentar.rs/ivk/home.html

CHUNCHU, B. R. K.; PUTTA, J. Rheological and Strength Behavior of Binary Blended SCC Replacing Partial Fine Aggregate with Plastic E-Waste as High Impact Polyst. Buildings, v. 9, 2, p. 50, 2019. doi:10.3390/buildings9020050

CHUNCHU, B. R. K.; PUTTA, J. Rheological and strength behavior of binary blended SCC replacing partial fine aggregate with plastic E-waste as high impact polystyrene. Buildings, v. 9, 2, p. 50, 2019. doi.org/10.3390/buildings9020050 DOI: https://doi.org/10.3390/buildings9020050

COLANGELO, F.; CIOFFI, R.; LIGUORI, B.; IUCOLANO, F. Recycled polyolefins waste as aggregates for lightweight concrete. Composites Part B Engineering, v. 106, p. 234–241, 2016 DOI: https://doi.org/10.1016/j.compositesb.2016.09.041

CORREIA, J. R.; LIMA, J .S.; DE BRITO, J. Post-fire mechanical performance of concrete made with selected plastic waste aggregates, Cement and concrete Composites, v. 53, p. 187–199, 2014. DOI: https://doi.org/10.1016/j.cemconcomp.2014.07.004

DAHMANE, M.; BOUTCHICHA, D.; ADJLOUT, L. One-way fluid structure interaction of pipe under flow with different boundary conditions. Mechanika, v. 22, n. 6, p. 495–503, 2016. doi: 10.5755/j01.mech.22.6.13189. DOI: https://doi.org/10.5755/j01.mech.22.6.13189

DAHMANE, M.; ZAHAF, S.; SOUBIH, M.; SLIMANE, S.; BENKHETTAB, M.; BOUTCHICHA, D. Numerical study of post-buckling o clamped-pinned pipe carrying fluid under different parameters, Current Reserch in Bioinformatics, v. 9,n. 1, p. 35–44, 2020. doi: 10.3844/ajbsp.2020.35.44 DOI: https://doi.org/10.3844/ajbsp.2020.35.44

DAHMANE, M.; ZAHAF, S.; SOUBIH, M. Free vibration induced by internal flow in cantilevered pipe under different parameters. International Journal of Advanced Scientific and Technical Research, v. 10, n. 5, p. 1–12, 2020. doi: 10.26808/rs.st.10v5.01 DOI: https://doi.org/10.26808/rs.st.10v5.01

DAWOOD, A. O.; AL-KHAZRAJI, H.; FALIH, R. S. Physical and mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates. Case Studies in Construction Materials, v. 14, e00482, 2021. doi: 10.1016/j.cscm. 2020.e00482 DOI: https://doi.org/10.1016/j.cscm.2020.e00482

DEBIEB, F.; KENAI, S. The use of fine and coarse crushed bricks as aggregates in concrete. Construction and Building Materials, v. 22, 5, p. 886–93, 2008. DOI: https://doi.org/10.1016/j.conbuildmat.2006.12.013

DEBIEB, F.; COURARD, L.; KENAI, S.; DEGEIMBRE, R. Mechanical and durability properties of concrete using contaminated recycled aggregates. Cement and Concrete Composites, v. 32, 8, p. 421–426, 2010. DOI: https://doi.org/10.1016/j.cemconcomp.2010.03.004

FARAJ, R. H.; SHERWANI, A. F. H; DARAEI, A. Mechanical, fracture and durability properties of self-compacting high strength concrete containing recycled polypropylene plastic particles. Journal of Building Engineering, v. 25, 2019. 100808.doi: 10.1016/j.jobe.2019.100808

FARAJ, R. H.; HAMA ALI, H. F.; SHERWANI, A. F. H.; HASSAN, B. R.; KARIM, H. Use of recycled plastic in self-compacting concrete: A comprehensive review on fresh and mechanical properties. Journal of Building Engineering, 30, 101283, 2020. doi: 10.1016/j.jobe.2020.101283 DOI: https://doi.org/10.1016/j.jobe.2020.101283

FARAJ, R. H.; SHERWANI, F. A.; DARAEI, A. Mechanical, fracture and durability properties of self- compacting high strength concrete containing recycled polypropylene plastic particles. Journal of Building Engineering, v. 25, 100808, 2019. doi.org/10.1016/j.jobe.2019.100808 DOI: https://doi.org/10.1016/j.jobe.2019.100808

GESOGLU, M.; GÜNEYISI, E.; HANSU, O.; ETLI, S.; ALHASSAN, M. Mechanical and fracture characteristics of self-compacting concretes containing different percentage of plastic waste powder. Construction and Building Materials, v. 140, p. 562–569, 2017. doi: 10.1016/j.conbuildmat.2017.02.139. DOI: https://doi.org/10.1016/j.conbuildmat.2017.02.139

GHERNOUTI, Y.; RABEHI, B.; BOUZIANI, T.; GHEZRAOUI, H.; MAKHLOUFI, A. Fresh and hardened properties of self-compacting concrete containing plastic bag waste fibers (WFSCC). Construction and Building Materials, v. 82, p. 89–100, 2015. doi: 10.1016/j.conbuildmat.2015.02.059 DOI: https://doi.org/10.1016/j.conbuildmat.2015.02.059

GUERBAS, N.; AIT MOHAMED AMER, A.; ADJOUDJ, M.; EZZIANE, K. The impact of supplementary cementitious materials on the rheological and mechanical properties of mortars based on quarry waste sand. Studies in Engineering and Exact Sciences, Curitiba, v. 5, n.1, p. 770–798, 2024. https://doi.org/10.54021/seesv5n1-042 DOI: https://doi.org/10.54021/seesv5n1-042

HANNAWI, K.; KAMALI-BERNARD, S.; PRINCE, W. Physical and mechanical properties of mortars containing PET and PC waste aggregates. Waste Management, v. 30, p. 2312–20, 2010. DOI: https://doi.org/10.1016/j.wasman.2010.03.028

HAMA, S. M.; HILAL, N. N. Fresh properties of self-compacting concrete with plastic waste as partial replacement of sand. International Journal of Sustainable Built Environment, v. 6, 2, p. 299–308, 2017. doi: 10.1016/j.ijsbe.2017.01.001.

HINISLIOGLU, S.; AGAR, E. Use of high density polyethylene as bitumen modifier in asphalt concrete mix. Materials Letters, v. 28, p. 267-271, 2004. DOI: https://doi.org/10.1016/S0167-577X(03)00458-0

HOSSEIN, M.; MAHMOOD, M.; ABDUL RAHMAN, M. The feasibility of improving impact resistance and strength properties of sustainable concrete composites by adding waste metalized plastic fibers. Construction and Building Materials, v. 169, p. 223–236, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.210

IANOR. Recueil des normes algériennes. Sous direction de la normalisation, Direction de la recherche et de la prospective sous-direction de la normalisation. Ministère algérien des travaux publics, Alger, 2010.

KAMARUDDIN, M. A.; ABDULLAH, M. M. A.; ZAWAWI, M. H.; ZAINOL, M. R. R. A. Potential use of Plastic Waste as Construction Materials: Recent Progress and Future Prospect. IOP Conference Series: Materials Science and Engineering, v. 267, 012011, 2017. doi:10.1088/1757-899x/267/1/012011 DOI: https://doi.org/10.1088/1757-899X/267/1/012011

KASEMSIRI, P.; POSI, P.; HIZIROGLU, S.; CHINDAPRASIRT, P. Characterization of an environment friendly lightweight concrete containing ethyvinylacetate waste. Materials & Design, v. 96, p. 350–356, 2016. DOI: https://doi.org/10.1016/j.matdes.2016.02.037

KIM, S.; YI, N.; KIM, H.; KIM, J.; SONG, Y. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, v. 32, p. 232–40, 2010. DOI: https://doi.org/10.1016/j.cemconcomp.2009.11.002

LEI, G.; OZBAKKALOGLU, T. Use of recycled plastics in concrete: A critical review. Waste Management, v. 51, p. 19–42, 2016. DOI: https://doi.org/10.1016/j.wasman.2016.03.005

LI, X.; LING, T.C.; HUNG MO, K. Functions and impacts of plastic/rubber wastes as eco-friendly aggregate in concrete– A review. Construction

MOHAMMED, A.; ALI ALREKABI, T. K. M.; N. RAJAB.; HILAL, N. Mechanical properties of concrete and mortar containing low density polyethylene waste particles as fine aggregate. Journal of Materials and Engineering Structures, v. 7, 1, p. 57–72, 2020.

MOHAMMED, A. A. Modelling the mechanical properties of concrete containing PET waste aggregate. Construction and Building Materials, v. 150, p. 595–605, 2017. doi: 10.1016/j.conbuildmat.2017.05.154. DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.154

MOHAMMED, H.; SADIQUE, M.; SHAW, A.; BRAS, A. The influence of incorporating plastic within concrete and the potential use of microwave curing; A review. Journal of Building Engineering, v. 32, 101824, 2020. doi: 10.1016/j.jobe.2020.101824 DOI: https://doi.org/10.1016/j.jobe.2020.101824

MROWIEC, B. Plastics in the circular economy (CE). The Journal of Institute of Environmental Protection-National Research Institute, v. 29, p. 16–19, 2018. doi:10.2478/oszn-2018-0017. DOI: https://doi.org/10.2478/oszn-2018-0017

NURSYAMSI, ZEBUA, W. S. B. The Influence of Pet Plastic Waste Gradations as Coarse Aggregate Towards Compressive Strength of Light Concrete. Procedia Engineering, v. 171, p. 614–619, 2017. doi: 10.1016/j.proeng.2017.01.394 DOI: https://doi.org/10.1016/j.proeng.2017.01.394

OLOFINNADE, O.; CHANDRA, S.; CHAKRABORTY, P. Recycling of high impact polystyrene and low-density polyethylene plastic wastes in lightweight based concrete for sustainable construction. Materials Today: Proceedings, v. 38, p. 2151–2156, 2021. doi: 10.1016/j.matpr.2020.05.176 DOI: https://doi.org/10.1016/j.matpr.2020.05.176

PEREIRA, E. L.; DE OLIVEIRA JUNIOR, A. L.; FINEZA, A. G. Optimization of mechanical properties in concrete reinforced with fibers from solid urban wastes (PET bottles) for the production of ecological concrete. Construction and Building Materials, v. 149, p. 837–848, 2017. doi: 10.1016/j.conbuildmat.2017.05.148 DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.148

SADRMOMTAZI, A.; DOLATI-MILEHSARA, S.; LOTFI-OMRAN, O.; SADEGHI-NIK, A. The combined effects of waste Polyethylene Terephthalate (PET) particles and pozzolanic materials on the properties of self-compacting concrete. Journal of Cleaner Production, v. 112, p. 2363–2373, 2016. doi.org/10.1016/j.jclepro.2015.09.107

SADRMOMTAZI, A.; DOLATI-MILEHSARA, S.; LOTFI-OMRAN, O.; SADEGHI-NIK, A. The combined effects of wastePolyethylene Terephthalate (PET) particles and pozzolanic materials on the properties of self-compacting concrete. Journal of Cleaner Production, v. 112, p. 2363–2373, 2016. doi: 10.1016/j.jclepro.2015.09.107 DOI: https://doi.org/10.1016/j.jclepro.2015.09.107

SAFER, O.; BELAS, N.; BELARIBI, O.; BELGUESMIA, K.; MEBROUKI, A.; HAMADACHE, M. Study of the behavior in the fresh and hardened state of an eco-concrete based on dredged sediments. Journal of Materials and Environmental Sciences, v. 8, n. 6, p. 2026–2033, 2017.

SAFER, O.; BELAS, N.; BELARIBI, O.; BELGUESMIA, K.; BOUHAMOU, N. E.; MEBROUKI, A. Valorization of Dredged Sediments as Components of Vibrated Concrete: Durability of These Concretes Against Sulfuric Acid Attack. International Journal of Concrete Structures and Materials, v. 12, 2018. DOI: https://doi.org/10.1186/s40069-018-0270-7

SAFER, O.; BELAS, N.; BELARIBI, O.; BELGUESMIA, K. Resistance of Concrete Based on Treated Mud to Seawater Attack. Journal of Materials and Environmental Sciences, p. 111–121, 2021.

SAIAH, T.; ADJOUDJ, M.; AIT MOHAMED AMER, A.; EZZIANE, K. Effect of replacing natural sand by quarry waste sand in recycled aggregate concrete. European Journal of Environmental and Civil Engineering, 2024. https://doi.org/10.1080/19648189.2024.2314102 DOI: https://doi.org/10.1080/19648189.2024.2314102

SAIKIA, N.; DE BRITO, J. Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Construction and Building Materials, v. 52, p. 236–244, 2014. doi: 10.1016/j.conbuildmat.2013.11.049 DOI: https://doi.org/10.1016/j.conbuildmat.2013.11.049

SERBANOIU, A.; BABOR, D.; BURLACU, A.; SOSOI, G.; BARBUTA, M. Waste as aggregate substitution in polymer concrete. Procedia Manufacturing, v. 22, p. 347–351, 2018. DOI: https://doi.org/10.1016/j.promfg.2018.03.052

SHAIK, B.; RAL, M.; AL-DULAIJAN, S.; MASLEHUDDIN, M. Mechanical and thermal properties of lightweight recycled plastic aggregate concrete. Journal of Building Engineering, v. 32,101710, 2020. DOI: https://doi.org/10.1016/j.jobe.2020.101710

SHARMA, R.; BANSAL, P. P. Use of different forms of waste plastic in concrete – a review. Journal of Cleaner Production, v. 112, p. 473–482, 2016. doi: 10.1016/j.jclepro.2015.08.042. DOI: https://doi.org/10.1016/j.jclepro.2015.08.042

SIDDIQUE, R.; KHATIB, J.; KAUR, I. Use of recycled plastic in concrete: a review. Waste Manage, v. 28, p. 1835–1852. doi.org/10.1016/j.wasman.2007.09.011 DOI: https://doi.org/10.1016/j.wasman.2007.09.011

SIDI MOHAMED, E. H.; AIT MOHAMED AMER, A.; ADJOUDJ, M. Study of the dynamic behavior of plates in gradient properties with logarithmic and exponential porosity. Studies in Engineering and Exact Sciences, Curitiba, v. 5, n.1, p. 1548–1569, 2024. https://DOI: 10.54021/seesv5n1-028 DOI: https://doi.org/10.54021/seesv5n1-028

SHEELAN, M.; NAHLA, N. Fresh properties of self-compacting concrete with plastic waste as partial replacement of sand. International Journal of Sustainable Built Environment, v. 6, p. 299–308, 2017. doi: 10.1016/j.ijsbe.2017.01.001 DOI: https://doi.org/10.1016/j.ijsbe.2017.01.001

SALLAI, H. H.; BOUHAMOU, N. E.; MAROUF, H.; BELGHIT, A.; CÜNEYT AYDIN, A. Influence of calcined dam mud on the thermal conductivity of binary and ternary self-compacting concrete mixtures using the equivalent mortar method. Studies in Engineering and Exact Sciences, Curitiba, v. 5, n.1, p. 501–524, 2024. DOI: 10.54021/seesv5n1-029 DOI: https://doi.org/10.54021/seesv5n1-029

SLIMANE, S. A.; SLIMANE, A.; GUELAILIA, A.; BOUDJEMAI, A.; KEBDANI, S.; SMAHAT, A.; DAHMANE, M. Hypervelocity impact on honeycomb structure reinforced with bi-layer ceramic/aluminum facesheets used for spacecraft shielding. Mechanics of Advanced Materials and Structures, v. 29, 25, p. 4487–4505, 2022. doi: 10.1080/15376494.2021.1931991 DOI: https://doi.org/10.1080/15376494.2021.1931991

TAIBI, H. Effets de l’Incorporation des Déchets Plastiques sur le Comportement des Bétons. Thèse (Doctorat) – Université d’Oran, Algérie, 2021.

TAIBI, H.; NASSER, B.; AATTACHE, A.; DRAOUA, Z. Modeling the Mechanical Properties of Concrete Containing High Density Polyethylene Wastes. Journal of Materials and Environmental Sciences, v. 8, p. 177–196, 2021.

TAIBI, H.; NASSER, B. Valorisation des Déchets Plastiques dans le Béton Effets de la Morphologie des Déchets. Conference: The International Congress on Materials for Environment, Energy and Bioresources Application, CANADA, 2023.

THORNEYCROFT, J.; ORR, J.; SAVOIKAR, P.; BALL, R.J. Performance of structural concrete with recycled plastic waste. Construction and Building Materials, v. 161, p. 63–69, 2018. DOI: https://doi.org/10.1016/j.conbuildmat.2017.11.127

TRAORE, B.; ATCHOLI, K. E.; BOFFOUE, M. O.; LACHAT, R.; EMERUWA, E. Elaboration and Characterization of Composite Materials made of Plastic Waste and Sand: Influence of Clay Load. International Journal of Scientific Engineering and Technology, v. 6, 7, p. 220-223,2017. DOI: 10.5958/2277–1581.2017.00024.9 DOI: https://doi.org/10.5958/2277-1581.2017.00024.9

VIJAYA, G. S.; GHORPADE, V. G.; SUDARSANA RAO, H. The Behaviour of Self Compacting Concrete with Waste Plastic Fibers When Subjected to Chloride Attack. Materials Today: Proceedings, v. 5, 1, p. 1501-1508, 2018. doi: 10.1016/j.matpr.2017.11.239 DOI: https://doi.org/10.1016/j.matpr.2017.11.239

YANG, S.; YUE, X.; LIU, X.; TONG, Y. Properties of self-compacting lightweight concrete containing recycled plastic particles. Construction and Building Materials, v. 84, 1, p. 444–453, 2015. https://doi.org/10.1016/j.conbuildmat.2015.03.038 DOI: https://doi.org/10.1016/j.conbuildmat.2015.03.038

ZÁLESKÁ, M.; PAVLÍKOVÁ, M.; POKORNÝ, J.; JANKOVSKÝ, O.; PAVLÍK, Z.; ČERNÝ, R. Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Construction and Building Materials, v. 180, p. 1–11, 2018. doi: 10.1016/j.conbuildmat.2018.05.250 DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.250

ZAHAF, S.; DAHMANE, M.; BELAZIZ, A.; BOURI, I. Failure analysis of semi-elliptical crack behavior in the cement mantle of a total hip prosthesis. Materials Physics and Mechanics, v. 48, p. 242–271, 2022. doi.org/10.18149/MPM.4822022_9

ZAHAF, S.; KEBDANI, S.; DAHMANE, M.; AZARI, Z. Biomechanical Comparison between Two Models of the Lumbar Intersomatic Fusion Cage Analyzed by the Finite Element Method. Journal of Biomimetics, Biomaterials and Biomedical Engineering, v. 32, p. 40–58, 2017. Doi: 10.4028/www.scientific.net/JBBBE.32.40 DOI: https://doi.org/10.4028/www.scientific.net/JBBBE.32.40

Downloads

Published

2024-05-31

How to Cite

Safer, O., Chaib, O., Mostefa, A. H., Dahmane, M., Amer, A. A. M., Salhi, M., Benadouda, M., Latroch, N., & Safa , A. (2024). Effect of the incorporation of plastic waste on the mechanical properties of composite materials. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 2529–2564. https://doi.org/10.54021/seesv5n1-125

Most read articles by the same author(s)