A numerical investigation into the equivalent parameters of a compressible soil treated by stone columns

Authors

  • Aissa Lahlouhi
  • Mohamed Labed
  • Mekki Mellas
  • Abdelhak Mabrouki

DOI:

https://doi.org/10.54021/seesv5n1-086

Keywords:

bearing capacity, composite cells, triaxial test, homogenization, factor of safety, stone columns

Abstract

A series of triaxial test simulations are adopted to estimate the equivalent strength parameters for compressible soil samples reinforced with stone columns. The simulations utilize the finite difference code, Fast Lagrangian Analysis of Continua in three dimensions FLAC3D. An elasto-plastic model is applied to utilize a Mohr-Coulomb yield criterion. The equivalent strength parameters are estimated using newly proposed formulas for geo-composite materials. The researchers compare the obtained results to the analytical formulas proposed in the literature. Additionally, the equivalent parameters are used in equivalent area models. This study investigates the effect of the replacement area ratio. This study offers two applications. Firstly, it evaluates the safety factor of embankments constructed on compressible soil improved with stone columns. Secondly, it estimates the bearing capacity of strip footings on compressible soil treated with stone columns. In all applications, both individual column and equivalent area models are considered. The proposed equations for the equivalent elastic parameters (E, ν) and the mechanical properties, equivalent cohesion, and internal frictional angle (c and φ) give results that agree with the solutions reported in the existing literature.

References

ABDELKRIM, M.; BUHAN, P. An elastoplastic homogenization procedure for predicting the settlement of a foundation on soil reinforced by columns. European Journal of Mechanics-A/Solids, v. 26, n. 4, p. 736-757, 2007. DOI: https://doi.org/10.1016/j.euromechsol.2006.12.004

ABUSHARAR, S. W.; HAN, J. Two-dimensional deep-seated slope stability analysis of embankments over stone column-improved soft clay. Engineering Geology, 120(1-4), 103-110, 2011. DOI: https://doi.org/10.1016/j.enggeo.2011.04.002

AMBILY, A. P.; GANDHI, S. R. Behavior of stone columns based on experimental and FEM analysis. Journal of Geotechnical and Geoenvironmental Engineering, v. 133, n. 4, p. 405-415, 2007. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(405)

ALI, K.; SHAHU, J. T.; SHARMA, K. G. Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement. Geosynthetics International, v. 21, n. 2, p. 103-118, 2014. DOI: https://doi.org/10.1680/gein.14.00002

BARKSDALE, R. D.; BACHUS, R. C. Design and construction of Stone Columns, 1983. Turner-Fairbank Highway Research Center. v. I (No. FHWA/RD-83/026; SCEGIT-83-104).

BARKSDALE, R. D.; BACHUS, R. C. Design and construction of stone columns, 1983. Turner-Fairbank Highway Research Center. v. I (No. FHWA/RD-83/026; SCEGIT-83-104).

BOUASSIDA, M.; JELLALI, B.; PORBAHA, A. Limit analysis of rigid foundations on floating columns. International Journal of Geomechanics, v. 9, n. 3, p. 89-101, 2009. DOI: https://doi.org/10.1061/(ASCE)1532-3641(2009)9:3(89)

ELBAR, M.; SOULI, A.; BELADEL, A.; ALI, B.; BENHAIMOURA, A. Impact study of flexible alternating current transmission system on power flow and power loss in power systems using MATLAB and PSAT. SEES, v. 4, n. 1, p. 348–369, Dec. 2023. https://doi.org/10.54021/seesv4n1-021. DOI: https://doi.org/10.54021/seesv4n1-021

BRINKGREVE, R. B. J.; VERMEER, P. A. Plaxis v8, Reference Manual. Delft University of Technology & PLAXIS bv, The Netherlands 2003.

CHRISTOULAS, S. T.; GIANNAROS, C. H.; TSIAMBAOS, G. Stabilization of embankment foundations by using stone columns. Geotechnical & Geological Engineering, v. 15, p. 247-258, 1997.

CHRISTOULAS, S. T.; GIANNAROS, C. H.; TSIAMBAOS, G. Stabilization of embankment foundations by using stone columns. Geotechnical & Geological Engineering, v. 15, p. 247-258, 1997. DOI: https://doi.org/10.1007/BF00880828

MOHAMED, E.; AHMED ZOHAIR, D.; HAFAIFA, A.; NAAS, C.; IRATNI, A.; Colak, I. Evaluation of Reliability Indices for Gas Turbines Based on the Johnson SB Distribution: Towards Practical Development. Emirates Journal for Engineering Research, v. 28, n. 2, Article 5, 2023. https://scholarworks.uaeu.ac.

ae/ejer/vol28/iss2/5.

CASTRO, J.; KARSTUNEN, M.; SIVASITHAMPARAM, N. Influence of stone column installation on settlement reduction. Computers and Geotechnics, v. 59, p. 87-97, 2014. DOI: https://doi.org/10.1016/j.compgeo.2014.03.003

CASTRO, J.; KARSTUNEN, M.; SIVASITHAMPARAM, N.; SAGASETA, C. Numerical analyses of stone column installation in Bothkennar clay (pp. 212-8). CRC PRESS, 2013. DOI: https://doi.org/10.1201/b13890-31

CASTRO, J. An analytical solution for the settlement of stone columns beneath rigid footings. Acta Geotech, v. 11, 309–324, 2016a. DOI: https://doi.org/10.1007/s11440-014-0358-4

CASTRO, J. Discussion of “column supported embankments with geosynthetic encased columns: validity of the unit cell concept”. Geotech. Geol. Eng., v. 34, n. 1, p. 419–420, 2016b. DOI: https://doi.org/10.1007/s10706-015-9934-0

CASTRO, J. Groups of encased stone columns: influence of column length and arrangement. Geotext. Geomembranes, v. 45, p. 68–80, 2017. DOI: https://doi.org/10.1016/j.geotexmem.2016.12.001

CASTRO, J.; SAGASETA, C. Deformation and consolidation around encased stone columns. Geotextiles and Geomembranes, v. 29, n. 3, p. 268-276, 2011. DOI: https://doi.org/10.1016/j.geotexmem.2010.12.001

CASTRO, J.; SAGASETA, C. Influence of elastic strains during plastic deformation of encased stone columns. Geotext. Geomembranes, v. 37, p. 45–53, 2013. DOI: https://doi.org/10.1016/j.geotexmem.2013.01.005

ELBAR M., MERZOUK I., BEALDEL A., REZAOUI M.M., IRATNI A., HAFAIFA A. Power Quality Enhancement in Four-Wire Systems Under Different Distributed Energy Resource Penetration. Electrotehnica, Electronica, Automatica (EEA), v. 69, n. 4, p. 50-58, 2021. ISSN 1582-5175. https://doi.org/10.46904/eea. DOI: https://doi.org/10.46904/eea.21.69.4.1108006

69.4.1108006.

DAS, A. K.; DEB, K. Experimental and 3D numerical study on time-dependent behavior of stone column–supported embankments. International Journal of Geomechanics, v. 18, n. 4, p. 04018011, 2018. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001110

DAS, A. K.; DEB, K. Modeling of uniformly loaded circular raft resting on stone column-improved ground. Soils and Foundations, v. 54, n. 6, p. 1212-1224, 2014. DOI: https://doi.org/10.1016/j.sandf.2014.11.014

ELSHAZLY, H.; HAFEZ, D.; MOSSAAD, M. Settlement of circular foundations on stone-column-reinforced grounds. Proceedings of The Institution of Civil Engineers-Ground Improvement, v. 11, n. 3, p. 163-170, 2007. DOI: https://doi.org/10.1680/grim.2007.11.3.163

GUPTA, A. K. A Review article on Construction, Parametric Study, and Settlement Behavior of Stone Columns. IOP Conference Series: Earth and Environmental Science, IOP Publishing, v. 796, n. 1, p. 012021, 2021 June. DOI: https://doi.org/10.1088/1755-1315/796/1/012021

HAN, J.; YE, S. L. Simplified method for consolidation rate of stone column reinforced foundations. Journal of Geotechnical and Geoenvironmental Engineering, v. 127, n. 7, p. 597-603, 2001. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(597)

HOLTZ, R. D.; KOVACS, W. D. Introduction to Geotechnics. Presses Inter Polytechnique, 1991.

INDRARATNA, B.; BIABANI, M. M.; NIMBALKAR, S. The behavior of geocell-reinforced subballast subjected to cyclic loading in plane-strain condition. Journal of Geotechnical and Geoenvironmental Engineering, v. 141, n. 1, p. 04014081, 2015. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001199

JELLALI, B.; BOUASSIDA, M.; DE BUHAN, P. A homogenization method for estimating the bearing capacity of soils reinforced by columns. International Journal for Numerical and Analytical Methods in Geomechanics, v. 29, n. 10, p. 989-1004, 2005. DOI: https://doi.org/10.1002/nag.441

KRISHNAMURTHY, P.; MANIAM RAJAN, P. Comparative Study on the Reinforced Sand-Bed and the Stone Column in Improving the Clay Deposit Supporting Isolated Footing. Advances in Civil Engineering, 2024. DOI: https://doi.org/10.1155/2024/8836116

LABED, M.; MELLAS, M. Stability of geosynthetic reinforced embankments over stone column-improved soft soil. JOURNAL OF APPLIED ENGINEERING SCIENCE & TECHNOLOGY, 2(2), 65-74, 2016.

LEE, J. S.; PANDE, G. N. Analysis of stone‐column reinforced foundations. International Journal for Numerical and Analytical Methods in Geomechanics, v. 22, n. 12, p. 1001-1020, 1998. DOI: https://doi.org/10.1002/(SICI)1096-9853(199812)22:12<1001::AID-NAG955>3.0.CO;2-I

MABROUKI, A., BENMEDDOUR, D., FRANK, R., MELLAS, M. Numerical study of the bearing capacity for two interfering strip footings on sands. Computers and Geotechnics, v. 37, n. 4, p. 431-439, 2010. DOI: https://doi.org/10.1016/j.compgeo.2009.12.007

MITCHELL, J. K.; HUBER, T. R. Performance of a stone column foundation. Journal of Geotechnical Engineering, v. 111, n. 2, p. 205-223, 1985. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1985)111:2(205)

NAZARIAFSHAR, J.; ASLANI, M.; MEHRANNIA, N. Experimental study on Equivalent shear strength of cohesive soils improved with Stone columns by Triaxial Testing. Amirkabir Journal of Civil Engineering, v. 52, n. 9, p. 2191-2210, 2020.

PRIEBE, H. J. The design of vibro replacement. Ground Engineering, v. 28, n. 10, p. 31, 1995.

SUN, J.; LU, M.; XU, B.; SHAN, J. Consolidation of high replacement ratio stone column-reinforced ground: Analytical solutions incorporating clogging effect. Journal of Rock Mechanics and Geotechnical Engineering, 2024. DOI: https://doi.org/10.1016/j.jrmge.2023.12.011

SEXTON, B. G.; MCCABE, B. A.; KARSTUNEN, M.; SIVASITHAMPARAM, N. Stone column settlement performance in structured anisotropic clays: the influence of creep. Journal of Rock Mechanics and Geotechnical Engineering, v. 8, n. 5, p. 672-688. 2016. DOI: https://doi.org/10.1016/j.jrmge.2016.05.004

Downloads

Published

2024-05-09

How to Cite

Lahlouhi, A., Labed, M., Mellas, M., & Mabrouki, A. (2024). A numerical investigation into the equivalent parameters of a compressible soil treated by stone columns. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 1690–1721. https://doi.org/10.54021/seesv5n1-086