Application of the FMECA method on the electro-hydraulic system for drilling machine type NKH45

Authors

  • Abdelhak Elhannani
  • Abbes Elmeiche
  • Mohamed Bouamama
  • Toufik Bousnane

DOI:

https://doi.org/10.54021/seesv5n1-112

Keywords:

preventive maintenance, radial drilling machine, reliability, FMECA method

Abstract

This article focuses on the implementation of a preventive maintenance strategy, responding to a major challenge: the search for optimization in minimizing downtime of the radial drilling machine (NKH45). Crucially positioned at the heart of the mechanical manufacturing process, this machine holds significant influence on overall production performance and availability. In consideration of the strategic importance of this equipment within the framework of the mechanical manufacturing activity, an advanced methodology, in particular FMECA (Failure Mode Effects and Criticality Analysis), is implemented. FMECA represents one of the most recommended approaches in this context, based on reliability, allowing the meticulous identification of the main causes of functional failures of equipment. FMECA is a risk prevention method. It is used to improve the reliability of a product, a process or even a means of production. It makes it possible to assess the criticality of potential failures in a system. According to the recommendations of the maintenance department of the company specializing in the construction of agricultural equipment, this study will focus on a subsystem of the electro-hydraulic part of the NKH45 radial drilling machine, we use the FMEA Analysis method (Failure Mode Effects and Criticality Analysis). Thanks to this approach, it is possible to identify the main reasons for equipment breakdowns that affect production and to classify these breakdowns in order to develop an optimal maintenance strategy aimed at: reducing the number of breakdowns, preventing breakdowns, improving the preventive maintenance, reduce downtime, improve corrective maintenance, therefore the ultimate objective of this approach is to design an optimal maintenance action plan in order to significantly minimize downtime, which slows down production flow.

References

AHMAD, R.; KAMARUDDIN, S.; AZID, I. A.; ALMANAR, I. P. Failure analysis of machinery component by considering external factors and multiple failure modes – a case study in the Processing Industry. Engineering Failure Analysis, v. 25, p. 182–192, 2012. https://doi.org/10.1016/j.engfailanal.2012.05.007

BELHADJ, B.; BOULENOUAR, M. E. H. A.M.D.E.C Machine (Boite électro-hydraulique d’une perceuse radiale). Master professionnel en management de production et de la maintenance industrielle 2éme promotion, Institut national de la productivité et de développement industriel, Algérie, 2020.

BOUAMAMA, M.; ELMEICHE, A.; BELHADJ, B.; BOULENOUAR, M. E. H. Maintenance of drilling machines using Pareto ABC method. Materials Science. Power Engineering, v. 28, n. 1, p. 32–42, 2022. https://doi.org/10.18721/JEST.

CRĂCIUN, I.; CHIFAN, F.; DUMITRAŞ, C. G. A new approach on preventive maintenance in industry. Bulletin of the Polytechnic Institute of Iași. Machine Constructions Section, v. 69, n. 2, p. 33–43, 2023. https://doi.org/10.2478/

bipcm-2023-0013

DUI, H.; WEI, X. Fault analysis and preventive maintenance of Rocket Vertical Assembly and test plant system. International Journal of Mathematical, Engineering and Management Sciences, v. 8, n. 6, p. 1130–1148, 2023. https://doi.org/10.33889/ijmems.2023.8.6.064

ELHANNANI, A. Etude dynamique des poutres coniques en matériaux FGM. Thèse de doctorat, Université Djillali Liabes de Sidi Bel Abbes, Algeria, 2019.

ELHANNANI, A.; REFASSI, K.; ELMEICHE, A. Dynamic Study of a functionally graded material rotating conical shaft based on a new model of variation by slice in the material properties. Journal of Failure Analysis and Prevention, v. 19, n. 5, p. 1312–1321, 2019. https://doi.org/10.1007/s11668-019-00725-8

ERBIYIK, H. Definition of maintenance and maintenance types with due care on preventive maintenance. Maintenance Management – Current Challenges, New Developments, and Future Directions, 2023. https://doi.org/10.5772/

intechopen.106346

JUAN, J.; ORTEGA, I. Reliability analysis for hydrothermal generating systems including the effect of maintenance scheduling. IEEE Transactions on Power Systems, v. 12, n. 4, p. 1561–1568, 1997. https://doi.org/10.1109/59.627859

LIGHTFOOT, H.; BAINES, T.; SMART, P. The servitization of manufacturing. International Journal of Operations & Production Management, v. 33, n. 11/12, p. 1408–1434, 2013. https://doi.org/10.1108/ijopm-07-2010-0196

MAJUMDER, P.; MAJUMDER, M.; SAHA, A. K.; SARKAR, K.; NATH, S. Real Time Reliability Monitoring of Hydro‐Power Plant by combined cognitive decision‐making technique. International Journal of Energy Research, v. 43, n. 9, p. 4912–4939, 2019. https://doi.org/10.1002/er.4530

MARTINS, E. F.; LIMA, G. B.; SANT’ANNA, A. P.; FONSECA, R. A. D.; SILVA, P. M. D.; GAVIÃO, L. O. Stochastic Risk Analysis: Monte Carlo Simulation and FMEA. Revista Espacios, v. 38, n. 04, 2017.

MEYRIEUX, C.; GARCIA, R.; POUREL, N.; MEGE, A.; BODEZ, V. Analyse des risques a priori du processus de prise en charge des patients en radiothérapie: Exemple d’utilisation de la Méthode Amdec. Cancer/Radiothérapie, v. 16, n. 7, p. 613–618, 2012. https://doi.org/10.1016/j.canrad.2012.07.188

OFANSON, U., TAMUNODUKOBIPI, D. T.; NITONYE, S. Failure mode effects and criticality analysis (FMECA) using fuzzy logic for ship dynamic positioning (DP) systems. Global Journal of Engineering and Technology Advances, v. 13, n. 1, p. 038–052, 2022. https://doi.org/10.30574/gjeta.2022.13.1.0170

OUMHANI M.; MECHTA S. Amélioration du rendement d’un système électromécanique par l’utilisation des méthodes de maintenance industrielle (Doctoral dissertation) – Université de M'sila, Algérie, 2020.

QUELENNEC, B.; BERETZ, L.; GUILLOT, M.; COLLANGE, O.; POTTECHER, J.; GOURIEUX, B. Analyse des modes de défaillance et de la criticité de l’administration des médicaments injectables en réanimation. RISQUES & QUALITÉ, v. 10, n. 4, 2013.

RAHMAWATI, N.; ALDIANSYAH, M.; YULIAWATI, E.; TRIHASTUTI, D. Application of overall equipment effectiveness and failure mode EFFFECT and criticality analysis methods to improve machine performance effectiveness. Tibuana, v. 6, n. 2, p. 89–97, 2023. https://doi.org/10.36456/tibuana.6.2.7339.89-97

ROBATTO SIMARD, S.; GAMACHE, M.; DOYON-POULIN, P. Current practices for preventive maintenance and expectations for predictive maintenance in east-Canadian mines. Mining, v. 3, n. 1, p. 26–53, 2023. https://doi.org/10.3390/

mining3010002

SEDRATA L.; FERRAH C. E. Etude Et Maintenance d’un System Solaire Photovoltaïque. (Doctoral dissertation) – University of M'sila, Algeria, 2021.

SRIVASTAVA, N. K.; MONDAL, S. Predictive maintenance using modified FMECA METHOD. International Journal of Productivity and Quality Management, v. 16, n. 3, p. 267, 2015. https://doi.org/10.1504/ijpqm.2015.071521

STENNIKOV, V. A.; POSTNIKOV, I. V. Methods for the Integrated Reliability Analysis of Heat Supply. Power Technology and Engineering, v. 47, n. 6, p. 446–453, 2014. https://doi.org/10.1007/s10749-014-0467-0

SUHARJO, B.; SUHARYO, O. S.; BANDONO, A. Failure mode effect and criticality analysis (FMECA) for determination time interval replacement of critical components in warships radar. Journal of Theoretical and Applied Information Technology, v. 97, n. 10, p. 2861-2870, 2020. https://doi.org/10.5281/zenodo.3256535

YU, Y.; ZHANG, C. Optimization of a preventive maintenance strategy for a product with limited repair times. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 2024. https://doi.org/10.1177/

x23121

Downloads

Published

2024-05-28

How to Cite

Elhannani, A., Elmeiche, A., Bouamama, M., & Bousnane, T. (2024). Application of the FMECA method on the electro-hydraulic system for drilling machine type NKH45. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 2254–2271. https://doi.org/10.54021/seesv5n1-112