Robust fuzzy – backstepping mode control of an induction motor


  • Abdelghafour Herizi
  • Abdelhafid Benyounes
  • Riyadh Rouabhi
  • Abdelghafour Boudras
  • Fayssal Ouagueni
  • Abderrahim Zemmit



induction motor, vector control, backstepping control, fuzzy logic, hybrid, robust


This paper presents a novel control for induction motors using backstepping control and fuzzy logic. The Backstepping control is suggested as a substitute for the conventional PI controller to attain high-performance motion control systems for the speed, flux, and current control loops. Stability analysis, based on Lyapunov theory, is also conducted to guarantee the convergence of the speed tracking error from all possible initial conditions. The speed regulator was changed to a fuzzy logic regulator. The simulation results confirm that the proposed hybrid control fuzzy-backstepping scheme offers improved performance in terms of trajectory tracking ability and robustness against variation when subjected to time-varying reference input.


HERIZI, A.; ROUABHI, R.; ZEMMIT, A. Speed control of doubly fed induction motor using backstepping control with interval type-2 fuzzy controller. Diagnostyka, v. 24, n. 3, p. 1-8, 2023. https://doi:10.29354/diag/166460.

LEKHCHINE, S.; BAHI, T.; ABADLIA, I.; BOUZERIA, H. PV-battery energy storage system operating of asynchronous motor driven by using fuzzy sliding mode control. International journal of hydrogen energy, v. 42, n. 13, p. 8756-8764, 2017. https://doi:10.1016/j.ijhydene.2016.05.298.

CHENG, J.; XIONG, Y. Application of teaching-learning-based optimization algorithm in rotor fault diagnosis for asynchronous motor. Procedia computer science, v. 131, p. 1275-1281, 2018. https://doi:10.1016/j.procs.2018.04.341.

KRIM, S.; MIMOUNI, M.F. Design of improved direct torque control based on a five level torque controller and a new Sugeno-Takagi fuzzy super-twisting controller applied to an induction machine. Engineering applications of artificial intelligence, v. 126, p. 106900, 2023. https://doi:10.1016/j.engappai.


SAMI, I.; ULLAH, S.; BASIT, A.; ULLAH, N.; RO, J.S. Integral super twisting sliding mode based sensorless predictive torque control of induction motor. IEEE Access, v. 8, p. 186740-186755, 2020. https://doi:10.1109/ACCESS.2020.

SABZALIAN, M.H.; MOHAMMADZADEH, A. A new robust control for induction motors. IETE journal of research, v. 68, n. 2, p. 1168-1176, 2022. https://doi:10.1080/03772063.2019.1643265.

SABZALIAN, M.H.; MOHAMMADZADEH, A.; SHUYI, L.; WEIDONG, Z. A robust control of a class of induction motors using rough type-2 fuzzy neural networks. Soft Computing, v. 24, p. 9809-9819, 2020. https://doi:10.1007/s005


AMMAR, A.; BOUREK, A.; BENAKCHA, A. Nonlinear svm-dtc for induction motor drive using input–output feedback linearization and high order sliding mode control. ISA Transactions, v. 67, p. 428-442, 2017. https://doi:10.1016/j.isatra.


KRSTIC, M.; KANELLAKOPOULOS, I.; KOKOTOVIC, P.V. Nonlinear and adaptive control design. John Wiley & Sons, Inc. 1995.

KOKOTOVIC, P.V. The joy of feedback: nonlinear and adaptive. IEEE Control systems Magazine, v. 12, n. 3, p. 7-17, 1992. https://doi:10.1109/


CHAOUCH, S.; HERIZI, A.; SERRAI, H.; NAIT SAID, M. Lyapunov and Backstepping Control Design of induction Motor System. 4th International Multi-Conference on Systems, Signals & Devices, Hammamet, Tunisia, 2007.

EL AZZAOUI, M.; MAHMOUDI, H.; ED-DAHMANI, C. Backstepping control of a Doubly Fed Induction Generator integrated to wind power system. International Conference on Electrical and Information Technologies, Tangier, Morocco, 2016.

DUALIBE, C.; VERLEYSEN M.; JESPERS, P.G.A. Design of analog fuzzy logic controllers in CMOS technologies. Kluwer Academic Publishers, New York, 2003.

LOWEN, R.; VERSCHOREN, A. Foundations of generic optimization, Volume 2: applications of fuzzy control, genetic algorithms and neural networks. Springer, 2008.

OUAGUENI, F.; BOUREGUIG K.; HERIZI, A. A new fuzzy adaptive PID controller approach design for solid oxyde fuel cell power plant. NeuroQuantology, v. 21, n. 6, p. 2049-2060, 2023. https://doi:10.48047/nq.20


HAMDI PACHA, F.Z.; HERIZI A.; FEZAI, N.; BEN AMOR, A. Intelligent monitoring of PMSM based on adaptive fuzzy logic for diagnosis. Przegląd Elektrotechniczny, v. 99, n. 4, p. 241-246, 2023. https://doi:10.15199/48.2023.


HERIZI, A.; ROUABHI R.; ZEMMIT, A. Comparative study of the performance of a sliding, sliding-fuzzy type 1 and a sliding-fuzzy type 2 control of a permanent magnet synchronous machine. Przegląd Elektrotechniczny, v. 98, n. 11, p. 21-29, 2022. https://doi:10.15199/48.2022.11.03.

MANNAN, M. A.; ISLAM, A.; UDDIN, M. N.; HASSAN, M. K.; MURATA, T.; TAMURA, J. Fuzzy-Logic Based Speed Control of Induction Motor Considering Core Loss into Account. Intelligent Control and Automation, v. 3, n. 3, p. 229-235, 2012. https://doi:10.4236/ica.2012.33026.

YOUSFI, L.; BOUCHEMHA, A.; BECHOUAT, M.; BOUKROUCHE, A. Vector control of induction machine using PI controller optimized by genetic algorithms. 16th International Power Electronics and Motion Control Conference and Exposition, Antalya, Turkey, 2014, p. 1272-1277, https://doi:10.1109/EPEPEMC.2014.6980687.

SELVI, S.; GOPINATH, S. Vector control of induction motor drive using optimized GA technique. IEEE 9th International Conference on Intelligent Systems and Control, Coimbatore, India, 2015, p. 1-7, https://doi:10.1109/ISCO.


EL OUANJLI, N.; MAHFOUD, S.; AL-SUMAITI, A.S.; EL DAOUDI, S.; DEROUICH, A.; El MAHFOUD, M.; MOSSA, M.A. Improved twelve sectors DTC strategy of induction motor drive using Backstepping speed controller and P-MRAS stator resistance identification-design and validation. Alexandria Engineering Journal, v. 80, p. 358-371, 2023. https://doi:10.1016/j.aej.2023.08.077.




How to Cite

Herizi, A., Benyounes, A., Rouabhi, R., Boudras, A., Ouagueni, F., & Zemmit, A. (2024). Robust fuzzy – backstepping mode control of an induction motor. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 1317–1334.