A Review of electricity tariffs and enabling solutions to optimize energy billing at the university centre of Tipaza, Algeria


  • Djamel Eddine Tourqui
  • Mohamed Bey
  • Rostom Khalef




Electricity cost, electricity tariff, reactive power, optimization, Tipaza University Center


The subject of our study follows the guidelines of our Minister for Higher Education and Scientific Research, who promotes bringing universities closer to the user sector. This document addresses the need to optimize the use of electricity in order to reduce energy bills, highlighting the case of the Morsli Abdellah university center in Tipaza (ARGELIA), which has faced a significant increase in its electricity costs in recent years. To tackle this problem, the center's professors and specialists are carrying out numerous scientific investigations aimed at finding applied solutions to reduce energy expenditure in order to improve the budget situation. First, we collected information on electricity consumption. Then we proceeded to establish a balance of power that allowed us to target potential sources of energy savings. Then, energy efficiency solutions. The main objective of the study is to optimize the use of electricity within the center, thereby reducing costs. The analysis of historical consumption data guides the implementation of specific strategies, including the choice of optimal prices and power analysis. The study brings significant results, recommending tariff readjustments, a reduction in available power and the installation of reactive energy compensation devices. The study recommends strategic changes to correct inefficiencies, such as changing prices, reducing available power and installing reactive compensation devices. The results suggest notable savings by eliminating costs associated with reactive energy and aligning the energy bill with actual consumption. These specific actions demonstrate the possibility of significantly optimizing energy management in an institutional context, with financial and ecological benefits.


YANG, P.; TANG, G.; NEHORAI, A. A game-theoretic approach for optimal time-of-use electricity pricing. IEEE Trans. Power Syst., v. 28, n. 2, p. 884–892, May 2013. doi: 10.1109/TPWRS.2012.2207134. DOI: https://doi.org/10.1109/TPWRS.2012.2207134

ALASKAR, B.; ALHADLAQ, A.; ALABDULKAREEM, A.; ALFADDA, A. On the Optimality of Electricity Tariffs for Saudi Arabias Residential Sector Considering the Effect of DER. In: 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). The Hague, Netherlands: IEEE, Oct. 2020. p. 1060–1064. doi: 10.1109/ISGT-Europe47291.2020.9248772.

AHMAD, A.; R. KASHIF, S. A.; SAQIB, M. A.; ASHRAF, A.; SHAMI, U. T. Tariff for reactive energy consumption in household appliances. Energy, v. 186, p. 115818, Nov. 2019. doi: 10.1016/j.energy.2019.07.148. DOI: https://doi.org/10.1016/j.energy.2019.07.148

ZHANG, H.; ZHAO, F.; FANG, K.; SUTHERLAND, J. W. Energy-conscious flow shop scheduling under time-of-use electricity tariffs. CIRP Ann., v. 63, n. 1, p. 37–40, 2014. doi: 10.1016/j.cirp.2014.03.011. DOI: https://doi.org/10.1016/j.cirp.2014.03.011

SHORT-Term Electricity Market Simulation for Pool-Based Multi-Period Auctions. IEEE Journals & Magazine, IEEE Xplore. [Online]. Available at: https://ieeexplore.ieee.org/abstract/document/6450143. Accessed: Nov. 27, 2023.

JARGSTORF, J.; JONGHE, C. de; BELMANS, R. Assessing the reflectivity of residential grid tariffs for a user reaction through photovoltaics and battery storage, Sustain. Energy Grids Netw., v. 1, p. 85–98, Mar. 2015. doi: 10.1016/j.segan.2015.01.003. DOI: https://doi.org/10.1016/j.segan.2015.01.003

SCHREIBER, M.; WAINSTEIN, M. E.; HOCHLOFF, P.; DARGAVILLE, R. Flexible electricity tariffs: Power and energy price signals designed for a smarter grid. Energy, v. 93, p. 2568–2581, Dec. 2015. doi: 10.1016/j.energy.2015.10.067. DOI: https://doi.org/10.1016/j.energy.2015.10.067

TOSTADO-VÉLIZ, M.; MOUASSA, S.; JURADO, F. A MILP framework for electricity tariff-choosing decision process in smart homes considering “Happy Hours” tariffs. Int. J. Electr. Power Energy Syst., v. 131, p. 107139, Oct. 2021. doi: 10.1016/j.ijepes.2021.107139. DOI: https://doi.org/10.1016/j.ijepes.2021.107139

WHAT is the Tempo Happy electricity rate? Endesa. [Online]. Available at: https://www.endesa.com/en/blogs/endesa-s-blog/light/happy-tempo-tariff-happy-moments. Accessed: Dec. 03, 2023.

THE-Brattle-Group.pdf. Accessed: Dec. 03, 2023. [Online]. Available: https://www.aemc.gov.au/sites/default/files/content/200c036c-1fbd-4f83-b976-6024482dbc55/The-Brattle-Group.pdf

CASTRO, F. A.; CALLAWAY, D. S. Optimal electricity tariff design with demand-side investments. Energy Syst., v. 11, n. 3, p. 551–579, Aug. 2020. doi: 10.1007/s12667-019-00327-1. DOI: https://doi.org/10.1007/s12667-019-00327-1

ALASKAR, B.; ALHADLAQ, A.; ALABDULKAREEM, A.; ALFADDA, A. On the Optimality of Electricity Tariffs for Saudi Arabias Residential Sector Considering the Effect of DER. In: 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). The Hague, Netherlands: IEEE, Oct. 2020. p. 1060–1064. doi: 10.1109/ISGT-Europe47291.2020.9248772. DOI: https://doi.org/10.1109/ISGT-Europe47291.2020.9248772

SELECTIVE and optimal dynamic pricing strategy for residential electricity consumers based on genetic algorithms: Heliyon. [Online]. Available at: https://www.cell.com/heliyon/fulltext/S2405-8440(22)02984-X?_returnURL=https

%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS240584402202984X%3Fshowall%3Dtrue. Accessed: Dec. 03, 2023.

HU, P.; AI, X.; ZHANG, S.; PAN, X. U. P. E. C. S. E. R. W. S. P. E. A. of L. K. State, and C. S. P. C. U. G. State, Modelling and Simulation Study of TOU Stackelberg Game Based on Demand Response. Power Syst. Technol., n. 2, p. 585–592, 2020.

XUE, W. et al. Research on the Optimal Design of Seasonal Time-of-Use Tariff Based on the Price Elasticity of Electricity Demand. Energies, v. 16, n. 4, p. 1625, Feb. 2023. doi: 10.3390/en16041625. DOI: https://doi.org/10.3390/en16041625

Ferreira, R. de S.; Barroso, L. A.; Lino, P. R.; Carvalho, M. M.; Valenzuela, P. Time-of-Use Tariff Design Under Uncertainty in Price-Elasticities of Electricity Demand: A Stochastic Optimization Approach. IEEE Trans. Smart Grid, v. 4, n. 4, p. 2285–2295, Dec. 2013. doi: 10.1109/TSG.2013.2241087. DOI: https://doi.org/10.1109/TSG.2013.2241087

GANS, W.; ALBERINI, A.; LONGO, A. Smart meter devices and the effect of feedback on residential electricity consumption: Evidence from a natural experiment in Northern Ireland. Energy Econ., v. 36, p. 729–743, Mar. 2013. doi: 10.1016/j.eneco.2012.11.022. DOI: https://doi.org/10.1016/j.eneco.2012.11.022

BARTUSCH, C.; ALVEHAG, K. Further exploring the potential of residential demand response programs in electricity distribution. Appl. Energy, v. 125, p. 39–59, Jul. 2014. doi: 10.1016/j.apenergy.2014.03.054. DOI: https://doi.org/10.1016/j.apenergy.2014.03.054

MÄRKLE-HUß, J.; FEUERRIEGEL, S.; NEUMANN, D. Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market. Appl. Energy, v. 210, p. 1290–1298, Jan. 2018. doi: 10.1016/j.apenergy.2017.08.039. DOI: https://doi.org/10.1016/j.apenergy.2017.08.039

GRIMM, V.; ORLINSKAYA, G.; SCHEWE, L.; SCHMIDT, M.; ZÖTTL, G. Optimal design of retailer-prosumer electricity tariffs using bilevel optimization. Omega, v. 102, p. 102327, Jul. 2021. doi: 10.1016/j.omega.2020.102327. DOI: https://doi.org/10.1016/j.omega.2020.102327

PAPAVASILIOU, A.; OREN, S. S. Large-Scale Integration of Deferrable Demand and Renewable Energy Sources. IEEE Trans. Power Syst., v. 29, n. 1, p. 489–499, Jan. 2014. doi: 10.1109/TPWRS.2013.2238644. DOI: https://doi.org/10.1109/TPWRS.2013.2238644

AUSSEL, D.; BROTCORNE, L.; LEPAUL, S.; NIEDERHÄUSERN, L. von. A trilevel model for best response in energy demand-side management. Eur. J. Oper. Res., v. 281, n. 2, p. 299–315, Mar. 2020. doi: 10.1016/j.ejor.2019.03.005. DOI: https://doi.org/10.1016/j.ejor.2019.03.005

BESANÇON, M.; ANJOS, M. F.; BROTCORNE, L.; GOMEZ-HERRERA, J. A. A Bilevel Approach to Optimal Price-Setting of Time-and-Level-of-Use Tariffs. arXiv, Dec. 09, 2019. [Online]. Available: http://arxiv.org/abs/1809.00512 Accessed: Dec. 03, 2023.

ZAKI, D. A. A Review of Electricity Tariffs and Enabling Solutions for Optimal Energy Management. Energies, v. 15, n. 22, p. 8527, Nov. 2022. doi: 10.3390/en15228527. DOI: https://doi.org/10.3390/en15228527

BLOCH, L.; HOLWEGER, J.; BALLIF, C.; WYRSCH, N. Impact of advanced electricity tariff structures on the optimal design, operation and profitability of a grid-connected PV system with energy storage. Energy Inform., v. 2, n. S1, p. 16, Sep. 2019. doi: 10.1186/s42162-019-0085-z. DOI: https://doi.org/10.1186/s42162-019-0085-z

BUĆKO, P.; WILCZYŃSKI, A. Reactive Energy Billing in Operator Tariffs in Poland. Acta Energ., n. 04, Art. n. 04, Dec. 2015. DOI: https://doi.org/10.12736/issn.2300-3022.2015401

RAAP, M.; RAESAAR, P.; TIIGIMÄGI, E. Reactive power pricing in distribution networks. Oil Shale, v. 28, n. 1S, p. 223, 2011. doi: 10.3176/oil.2011.1S.14. DOI: https://doi.org/10.3176/oil.2011.1S.14

BIELECKI, S.; SKOCZKOWSKI, T. An enhanced concept of Q-power management. Energy, v. 162, p. 335–353, Nov. 2018. doi: 10.1016/j.energy.2018.08.042. DOI: https://doi.org/10.1016/j.energy.2018.08.042

Arghavani, H.; Peyravi, M. Unbalanced current-based tariff. CIRED – Open Access Proc. J., v. 2017, n. 1, p. 883–887, Oct. 2017. doi: 10.1049/oap-cired.2017.0129. DOI: https://doi.org/10.1049/oap-cired.2017.0129

GUO, L.; CHENG, Y.; ZHANG, L.; HUANG, H. Research on power — factor regulating tariff standard. In: 2008 China International Conference on Electricity Distribution. Guangzhou, China: IEEE, Dec. 2008. p. 1–5. doi: 10.1109/CICED.2008.5211737. DOI: https://doi.org/10.1109/CICED.2008.5211737




How to Cite

Tourqui, D. E., Bey, M., & Khalef, R. (2024). A Review of electricity tariffs and enabling solutions to optimize energy billing at the university centre of Tipaza, Algeria. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 1205–1230. https://doi.org/10.54021/seesv5n1-063