Double star permanent magnet synchronous machine: modified direct torque control


  • Naas Bachir
  • Benalia M’hamdi
  • Amari Abderrahmane
  • Naas Badreddine



Double Star Permanent Magnet Synchronous Machine (DS-PMSM), Direct Torque Control (DTC), Artificial Neural Networks (ANN)


In the area of high power drives, double star synchronous machines are an interesting choice compared to conventional synchronous machines, due to the relatively low torque ripple created. In this paper, direct torque control (DTC) of double star permanent magnet synchronous machine (DS-PMSM) using artificial neural networks (ANN) is proposed. MATLAB/Simulink results show the comparison between direct torque control (DTC) and direct torque control using artificial neural networks (ANN). The analysis of the results shows good performance for speed, small torque and flow ripple when using the artificial neural network (ANN) strategy.


WERREN, L. Synchronous machine with two three phase windings, spatially disposed by 300 el. commutation reactance and model for converter performance simulation. ICEM 84 Conference, Lausanne, Switzerland, v. 2, p. 781, set. 1984.

NORDIN, N. M.; IDRIS, N. R. N. and AZLI, N. A. Direct Torque Control with 5-level cascaded H-bridge multilevel inverter for induction machines. IECON 2011- 37th Annual Conference of the IEEE Industrial Electronics Society. IEEE,p.4691, nov. 2011. DOI:

TAKAHASHI, I.; TOSHIHIKO N. A new quick-response and high-efficiency control strategy of an induction motor. IEEE Transactions on Industry applications, n. 5 , p. 820, 1986.

URREJOLA, P., et al. Direct torque control of an 3L-NPC inverter-fed induction machine: A model predictive approach. IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society.p.2974, nov. 2010. DOI:

OBERMANN, T. R., HURST, Z. D., and LORENZ, R. D. Deadbeat-direct torque & flux control motor drive over a wide speed, torque and flux operating space using a single control law. In 2010 IEEE Energy Conversion Congress and Exposition, p. 215, set 2010. DOI:

PEREDA, J., DIXON, J. and ROTTELLA, M. Direct Torque Control for sensorless induction motor drives using an improved H-Bridge multilevel inverter. 35th Annual Conference of IEEE Industrial Electronics. p1110, nov.2009. DOI:

ALLOUI, H., BERKANI, A., and REZINE, H. A three level NPC inverter with neutral point voltage balancing for induction motors Direct Torque Control." The XIX International Conference on Electrical Machines-ICEM 2010. IEEE,p.1 sep. 2010. DOI:

BACHIRI, H., et al. Improved Direct Torque Control Strategy Performances of Electric Vehicles Induction Motor. International Journal of Power Electronics and Drive Systems (IJPEDS), v.13, n.2, p.716, 2022. DOI:

M. ELBAR, A. SOULI, A. BELADEL, B. Ali, and A. Benhaimoura, “Impact study of flexible alternating current transmission system on power flow and power loss in power systems using MATLAB and PSAT”, SEES, vol. 4, no. 1, pp. 348–369, Dec. 2023. DOI:

A. Bensalem, B. Toual, M. Elbar, M. Khaleel, and Z. Belboul, “A framework to quantify battery degradation in residential microgrid operate with maximum self-consumption based energy management system ”, SEES, vol. 5, no. 1, pp. 354–370, Feb. 2024. DOI:

ANDRIOLLO, M. ; BETTANINI, G. ; MARTINELLI, G., et al. Analysis of Double-Star Permanent-Magnet Synchronous Generators by a General Decoupled d–q Model. IEEE Transactions on Industry Applications, v. 45, n. 4, p. 1416, 2009. DOI:

TAKAHASHI, I. ; NOGUCHI, T. A new quick-response and high-efficiency control strategy of an induction motor. IEEE Transactions on Industry applications, n. 5, p. 820, 1986. DOI:

CHAPUIS, Y. A. ; ROYE, D. ; et COURTINE, S. Commande directe du couple d'une machine asynchrone par le contrôle direct de son flux statorique. Journal de physique III, v. 5, n. 6, p. 863, 1995. DOI:

Mohamed, ELBAR; Ahmed Zohair, DJEDDI; Hafaifa, Ahmed; Naas, CHARRAK; Iratni, Abdelhamid; and colak, ilhami (2023) "Evaluation of Reliability Indices for Gas Turbines Based on the Johnson SB Distribution: Towards Practical Development," Emirates Journal for Engineering Research: Vol. 28: Iss. 2, Article 5.

BUETTNER, M. A.; MONZEN, N.; & HACKL, C. M. Artificial neural network based optimal feedforward torque control of interior permanent magnet synchronous machines: A feasibility study and comparison with the state-of-the-art. Energies, v.15, n. 5, p. 1838, 2022. DOI:

ELBAR M., MERZOUK I., BEALDEL A., REZAOUI M.M., IRATNI A., HAFAIFA A., “Power Quality Enhancement in Four-Wire Systems Under Different Distributed Energy Resource Penetration”, in Electrotehnica, Electronica, Automatica (EEA), 2021, vol. 69, no. 4, pp. 50-58, ISSN 1582-5175. DOI:

M. Khaleel and M. Elbar, “Exploring the Rapid Growth of Solar Photovoltaics in the European Union”, Int. J. Electr. Eng. and sustain., vol. 2, no. 1, pp. 61–68, Feb. 2024.

BENBOUHENNI, H. Four-level direct torque control of permanent magnet synchronous motor based on neural networks with regulation speed using neural PI controller. Majlesi Journal of Mechatronic Systems, v. 8, n. 4, p. 1, 2019. DOI:

KRISHNAMOORTHY, S.; SANJEEVIKUMAR, P.; & HOLM‐NIELSEN, J. B. Torque ripple minimization of PMSM using an adaptive Elman neural network‐controlled feedback linearization‐based direct torque control strategy. International Transactions on Electrical Energy Systems, v. 31, n. 1, 2021. DOI:

RAMIREZ-LEYVA, F. H. ; TRUJILLO-ROMERO, F. ; CABALLERO-MORALES, S. O. ; et al. Direct Torque Control of a Permanent-Magnet Synchronous Motor with Neural Networks. In : 2014 International Conference on Electronics, Communications and Computers (CONIELECOMP). IEEE, p. 71, 2014. DOI:

ZEMMIT, A.; MESSALTI, S.; et HARRAG, A. Innovative improved direct torque control of doubly fed induction machine (DFIM) using artificial neural network (ANN-DTC). International Journal of Applied Engineering Research, v. 11, n. 16, p. 9099, 2016.




How to Cite

Bachir, N., M’hamdi, B., Abderrahmane , A., & Badreddine, N. (2024). Double star permanent magnet synchronous machine: modified direct torque control. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 974–987.