Cooling Efficiency of a NACA4412 airfoil: Numerical application

Authors

  • Toufik Tayeb Naas
  • Mostefa Telha
  • Ismail Ghibeche
  • Omar Mokhtar Khelifa
  • Salem Ben Abdelhafid

DOI:

https://doi.org/10.54021/seesv5n1-048

Keywords:

cooling, efficiency, airfoil, CFD, NACA4412

Abstract

The temperatures imposed on the blades of the first stages of turbines are generally very high; these expose the latter to harmful thermal effects, pushing manufacturers to continually improve techniques for cooling the blades. It is true that by increasing the temperature of the gases at the inlet of the turbines, we increase the efficiency, the performance of the machines, and we improve the power and fuel consumption with a significant reduction in polluting gases. Thus, the current general trend among manufacturers is to design machines that operate at increasingly high inlet temperatures. This has led, therefore, to the constant search for new materials with high thermal resistance and to constantly improve cooling techniques. This task is conditioned by a good and deep understanding of the phenomenon of heat transfer in turbine blades. This study examines the three dimension numerical simulation of the flow and heat exchange inside an internal cooling channel of a gas turbine blade with the profile of NACA 4412. This channel plays an important role in increasing heat exchange between the cooling air and the walls of the blade. In the turbulent regime, we have investigated the cooling of a profile blade NACA 4412 using forced convection (V = 200, 250, 300, 350, and 400 m / s). determined that the value of the cold air's speed increases with the intensity of the secondary flow inside the morning. Results found that, The flow dynamics and kinematics of fluid particles alter significantly when the cooling air speed is increased, and the cooling level is enhanced.

References

DIXON, S. L. Fluid Mechanics, Thermodynamics of Turbomachinery. 3. ed. New York, Toronto, Sydney, Frankfurt: Pergamon Press Oxford, 1978.

ROBERT, Christian. Techniques de l’ingénieur: Machines hydrauliques et thermiques. 2000.

BOLLAND, Olav. Thermal Power Generation. 2004.

YAHIA, S. M.Turbines compressors and fans. Published by tata Mc Graw-Hill Publishing Company Limited National Aeronautical Laboratory Bangalor – INDIA, janvier 1984.

COHEN, H., ROGERS, G. F. C., SARAVANAMUTTOO, H. L. N. Gas Turbine Theory. 4. ed. London: Longman, 1996.

EL-WAKIL, M. M. Power Plant Technology. International Student, 1stprint, McGraw- Hill Education Singapore; International Ed edition. 1985.

LALLEMAND, André. Production d’énergie électrique par centrales thermiques. Techniques de l’Ingénieur, D 4 002, p. 1-11, 1995.

BOISSENIN, Y., MOLIERE, M., REMY, P. Les atouts de la turbine à gaz MS6001 B en cogénération –exemple de l’usine d’électricité de Metz. Revue technique GE Alsthom, n. 15, 1994.

LORANCHET, Yves. Mise en œuvre des turbines à gaz dans l'industrie.

ANZIEU, Pascal; PARISOT, Jean François; BIGOT, Bernard. Les réacteurs nucléaires à caloporteur gaz. CEA Saclay et Groupe Moniteur (Edition du Moniteur), Paris. 2006.

CRABOS, David J. Taylor Olivier. GE Power Systems Gas Turbine and Combined Cycle Products Technology -Experience-Innovation. Gas turbine and Combined Cycle- GE Power Systems. 2003.

SHARIKET KAHRABA SKIKDA. Notions de base du cycle combine et vue d'ensemble de l'installation-Phase II. Révision: b, fichier: Overview.

BLOCS, A. EPFL Turbomachines thermiques. Lausanne 1990.

LAKSHMINARAYANA, B. Fluid Dynamics and Heat Transfer of Turbomachinery. Wiley. 1996.

LAKSHMINARAYANA, B. Fluid dynamics heat transfer of turbomachinery. Jhon Wiley and sons, 1995.

PETOT, B. Refroidissement des aubes de turbines de turboréacteur. Congres SFT, Toulouse, 20-22 mai 1997. Paris: Elsevier, pp. 53-60. 1998.

HAFID, Mohamed. Simulation numérique d'un jet plan turbulent par fluent., mémoire d'ingénieur université larbi ben m'hidi, oum el bouaghi 2008.

LARSSON, J. Numerical simulation of turbulent flows for turbine blade heat transfer applications. Thesis (PhD) – Chalmers University of Technology Sweden, 1998.

NGUYEN, M. N. Étude expérimentale des échanges convectifs du au développement d'un film d'air froid. Thesis (Doctorate) – ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d'Aérotechique-Poitiers, 2012.

JOVANOVIC´, M. B. Film cooling through imperfect holes. Thesis (PhD) – Eindhoven University of Technology, the Netherlands. 2007.

AZZI, Abbes. Investigation numérique appliqué aux aubes des turbines à gaz, thèse de doctorat d’état, faculté de génie mécanique, département de génie maritime. USTOMB, Algérie.

GUSTAPHSON, B. Experimental Studies of Effusion Cooling. Thesis (PhD in Philosophy) – Department of Thermo and Fluid Dynamics, Chalmers University of Technology, Sweden, 2001.

HAN, J.; DUTTA, S.; EKKAD, S. Gas Turbine Heat Transfer and Cooling Technology. Taylor and Francis, 2000.

SADEGH MOGHANLOU, F.; VAJDI, M.; MOTALLEBZADEH, A.; SHA, J.; SHOKOUHIMEHR, M.; SHAHEDI ASL, M. Numerical analyses of heat transfer and thermal stress in a ZrB2 gas turbine stator blade. Ceram. Int., 2019. https://doi.org/10.1016/

j.ceramint..05.344.

VAFERI, K.; NEKAHI, S.; VAJDI, M.; SADEGH MOGHANLOU, F.; SHOKOUHIMEHR, M.; MOTALLEBZADEH, A.; SHA, J.; SHAHEDI ASL, M. Heat transfer, thermal stress and failure analyses in a TiB2 gas turbine stator blade, Ceram. Int., 2019.

THIBAULT, D. Docteur de L’école Nationale Supérieure De Mécanique Et D’aérotechnique De Poitiers. Doctoral dissertation, École centrale de Lyon. 2010.

MOSTAFAVI, M.; ALAKTIWI, A.; AGNEW, B. Thermodynamic analysis of combined open-cycle-twin-shaft gas turbine (Brayton cycle) and exhaust gas operated absorption refrigeration unit. Applied Thermal Engineering, v. 18, p. 847-856, 1998.

Downloads

Published

2024-04-03

How to Cite

Naas, T. T., Telha, M., Ghibeche, I., Khelifa , O. M., & Abdelhafid, S. B. (2024). Cooling Efficiency of a NACA4412 airfoil: Numerical application . STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 906–925. https://doi.org/10.54021/seesv5n1-048