Enhanced free reaching phase SMC for UMS


  • Ali Nasser-Eddine Bendenidina
  • Kamel Guesmi
  • Aissa Rebai




nonlinear systems, underactuated mechanical systems, sliding mode control, chattering phenomenon, stability


In this paper, a new design method for sliding mode control (SMC) is presented for nonlinear underactuated mechanical systems. The aim is to eliminate the reaching phase in SMC and avoid the chattering phenomenon while achieving fast and robust tracking for a class of underactuated mechanical systems (UMS). An alternative method is presented to express the sliding domain equations by incorporating tracking errors. The fundamental concept behind the suggested control scheme is to adjust the tracking errors, enabling the system response to commence on the sliding surface regardless of the initial conditions. This modification guarantees the elimination of the reaching phase, avoiding the chattering phenomenon, and ensuring that the tracking error converges to zero. The stability analysis of the proposed approach is conducted using the Lyapunov method. Through numerical simulations, the validity of the approach is confirmed by implementing the control scheme on a crane system. Subsequently, the performance of the proposed approach is compared with other control methods, emphasizing its effectiveness in handling uncertainties. This comparative analysis aims to emphasize the advantages and efficiency of the proposed control strategy over alternative methods, in particular, to address uncertainties and achieve the desired control objectives.


LU, B.; FANG, Y. Gain-adapting coupling control for a class of underactuated mechanical systems. Automatica, v. 125, p. 109461, 2021. https://doi.org/10.10


FU, M. Control of the cart-pole system: Model-based vs. model-free learning. IFAC-PapersOnLine, v. 56, n. 2, p. 11847-11852, 2023. https://doi.org/10.1016/


MA'ARIF, A.; VERA, M. A. M.; MAHMOUD, M. S.; LADACI, S.; ÇAKAN, A.; PARADA, J. N. Backstepping sliding mode control for inverted pendulum system with disturbance and parameter uncertainty. Journal of Robotics and Control (JRC), v. 3, n. 1, p. 86-92, 2022. https://doi.org/10.18196/jrc.v3i1.12739

ZHANG, J.; YU, S.; YAN, Y.; WU, D. Fixed-time output feedback sliding mode

tracking control of marine surface vessels under actuator faults with disturbance cancellation. Applied Ocean Research, v. 104, p. 102378, 2020. https://doi.org/


DIAZ-MENDEZ, Y.; DE JESUS, L. D.; DE SOUSA, M. S.; CUNHA, S. S.; RAMOS, A. B. Conditional integrator sliding mode control of an unmanned quadrotor helicopter.: Journal of Systems and Control Proceedings of the Institution of Mechanical Engineers, Part I Engineering, v. 236, n. 3, p. 458-472, 2022. https://doi.org/10.1177/09596518211049861

ZAARE, S.; SOLTANPOUR, M. R. The position control of the ball and beam system using state-disturbance observe-based adaptive fuzzy sliding mode control in presence of matched and mismatched uncertainties. Mechanical Systems and Signal Processing, v. 150, p. 107243, 2021. https://doi.org/10.1016/j.ymssp.


DAO, P. N.; LIU, Y.-C. Adaptive reinforcement learning strategy with sliding mode control for unknown and disturbed wheeled inverted pendulum. International Journal of Control, Automation and Systems, v. 19, n. 2, p. 1139-1150, 2021. https://doi.org/10.1007/s12555-019-0912-9

GU, X.; XU, W. Moving sliding mode controller for overhead cranes suffering from matched and unmatched disturbances. Transactions of the Institute of Measurement and Control, v. 44, n. 1, p. 60-75, 2022. https://doi.org/10.1177/01

TAI, T.; LU, Y.-S. Global sliding mode control with chatter alleviation for robust eigenvalue assignment. Journal of Systems and Control Engineering, v. 220, n. 7, p. 573-584, 2006. https://doi.org/10.1243/09596518JSCE197

SALAMCI, M. U.; BILGIN, N.; OZCAN, S.; AVAN, E. Y. Sliding mode control design for nonlinear systems without reaching phase. European Workshop on Advanced Control and Diagnosis, 2011. https://www.researchgate.net/publica


CHANG, T.-H.; HURMUZLU, Y. Sliding control without reaching phase and its application to bipedal locomotion. Journal of Dynamic Systems, Measurement and Control, v. 115, n. 3, p. 447-455, 1993. https://doi.org/10.1115/1.2899122

. CHOI, S.-B.; PARK, D.-W.; JAYASURIYA, S. A time-varying sliding surface for fast and robust tracking control of second-order uncertain systems. Automatica, v. 30, n. 5, p. 899-904, 1994. https://doi.org/10.1016/0005-1098(94)90180-5

ROY, R. G.; OLGAC, N. Robust nonlinear control via moving sliding surfacesn-th order case. IEEE Conference on Decision and Control, v. 2, 1997, p. 943-948. 10.1109/CDC.1997.657564

AL-KHAZRAJI, A.; ESSOUNBOULI, N.; HAMZAOUI, A.; NOLLET, F.; ZAYTOON, J. Type2 fuzzy sliding mode control without reaching phase for nonlinear system. Engineering applications of artificial intelligence, v. 24, n. 1, p. 23-38, 2011. https://doi.org/10.1016/j.engappai.2010.09.009

HUSSAIN, A.; ESSOUNBOULI, N.; HAMZAOUI, A. Adaptive variable structure fuzzy wavelet network based controller for nonlinear systems. IFAC Proceedings Volumes, v. 40, n. 21, p. 157-162, 2007. https://doi.org/10.3182/20071029-2-FR-4913.00027

HUSSAIN, A.; ESSOUNBOULI, N.; HAMZAOUI, A.; ZAYTOON, J. Variable structure wavelet-neural-network based controller for second order nonlinear systems. International Review of Automatic Control, v. 1, n. 1, p. 28-35, 2008.

ALOUI, S.; PAGES, O.; EL HAJJAJI, A.; CHAARI, A.; KOUBAA, Y. Robust adaptive fuzzy sliding mode control design for a class of mimo underactuated system. IFAC proceedings volumes, v. 44, n. 1, p.11127-11132, 2011. https://doi.org/10.3182/20110828-6-IT-1002.03435

VAN KIEN, C.; SON, N. N.; ANH, H. P. H. A stable lyapunov approach of

advanced sliding mode control for swing up and robust balancing implementation for the pendubot system. in AETA 2015: Recent Advances in Electrical Engineering and Related Sciences, Springer, 2016, p. 411-425. 10.1007/978-3-319-27247-4_36

RAMOS-PAZ, S.; ORNELAS-TELLEZ, F.; LOUKIANOV, A. G. Nonlinear optimal tracking control in combination with sliding modes: Application to the pendubot. IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 2017, p. 1-6. 10.1109/ROPEC.2017.8261619

BENDENIDINA, A.; GUESMI, K.; REBAI, A. Fuzzy fast terminal smc for underactuated mechanical systems. 2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS). IEEE, 2023, p. 1-6. 10.1109/ICAECCS56710.2023.10104963

ROY, S.; BALDI, S. Towards structure-independent stabilization for uncertain underactuated euler-lagrange systems. Automatica, v. 113, p. 108775, 2020. https://doi.org/10.1016/j.automatica.2019.108775

CIMBOROVÁ, K.; JADLOVSKÁ, S. Modeling of benchmark underactuated systems via different approaches. IFAC-PapersOnLine, v. 53, n. 2, p. 8935-8940, 2020. https://doi.org/10.1016/j.ifacol.2020.12.1421

QI, R.; ZHANG, Y.; KUMAR, K. D. Design and robustness analysis of a wavebased controller for tethered towing of defunct satellites. IEEE/CAA Journal of Automatica Sinica, v. 10, n. 1, p. 278-280, 2023. DOI: 10.1109/JAS.2023.

LUO, Y.; YU, H.; ZHANG, H.; ZHOU, Y. A novel newton-euler method-based nonlinear anti-swing control for a quadrotor uav carrying a slung load. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024.

HE, W.; GE, S. S. Cooperative control of a nonuniform gantry crane with constrained tension. Automatica, v. 66, p. 146-154, 2016. https://doi.org/10.1016/


REHMAN, F. U.; MEHMOOD, N.; DIN, S. U.; MUFTI, M. R.; AFZAL, H. Adaptive sliding mode based stabilization control for the class of underactuated mechanical systems. IEEE Access, v. 9, p. 26607-26615, 2021. DOI: 10.1109/ACCESS.2021.3057667

IDREES, M.; ULLAH, S.; MUHAMMAD, S. Sliding mode control design for stabilization of underactuated mechanical systems. Advances in Mechanical Engineering, v. 11, n. 5, p. 1687814019842712, 2019. https://doi.org/10.1177/1687814019842712

BUCAK, İ. Ö. An in-depth analysis of sliding mode control and its application to robotics. Automation and Control, 2020. DOI:10.5772/intechopen.93027

UTKIN, V.; POZNYAK, A.; ORLOV, Y. V.; POLYAKOV, A. Road map for sliding mode control design. Springer, 2020. https://doi.org/10.1007/978-3-030-41709-3

EKSIN, I.; TOKAT, S.; GÜZELKAYA, M.; SÖYLEMEZ, M. T. Design of a sliding mode controller with a nonlinear time-varying sliding surface. Transactions of the Institute of Measurement and Control, v. 25, n. 2, p. 145-162, 2003. https://doi.org/10.1191/0142331203tm079oa

WANG, T.; TAN, N.; QIU, J.; YU, Y.; ZHANG, X.; ZHAI, Y.; LABATI, R. D.; PIURI, V.; SCOTTI, F. Global-equivalent sliding mode control method for bridge crane. IEEE Access, v. 9, p. 160372-160382, 2021. DOI: 10.1109/ACCESS.


AGUIAR, C.; LEITE, D.; PEREIRA, D.; ANDONOVSKI, G.; ŠKRJANC, I. Nonlinear modeling and robust lmi fuzzy control of overhead crane systems. Journal of the Franklin Institute, v. 358, n. 2, p. 1376-1402, 2021. https://doi.org/10.1016/j.jfranklin.2020.12.003

QIAN, D.; YI, J. Hierarchical sliding mode control for under-actuated cranes. Springer, 2016. https://doi.org/10.1007/978-3-662-48417-3

BRUNTON, S. L.; KUTZ, J. N. Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press, 2019.




How to Cite

Bendenidina, A. N.-E., Guesmi, K., & Rebai, A. (2024). Enhanced free reaching phase SMC for UMS. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 799–820. https://doi.org/10.54021/seesv5n1-043