Fuzzy backstepping control for enhanced stability of a quadrotor unmanned aerial vehicle


  • Abdelhafid Benyounes
  • Abdelghafour Herizi
  • Mustapha Zegait
  • Monir Bouras
  • Bachir Nail
  • Imad Eddine Tibermacine




UAV, quadrotor, backstepping approach, fuzzy logic, robust control


This paper presents a robust fuzzy backstepping control approach to enhance the stability and maneuverability of a Quadrotor Unmanned Aerial Vehicle (UAV). The proposed design combines the robustness of backstepping control with the adaptability of fuzzy logic to address uncertainties and disturbances commonly encountered in UAV dynamics. By incorporating fuzzy logic, the controller can adapt to changing environmental conditions, ensuring reliable performance in various flight scenarios. The backstepping technique enables systematic handling of nonlinear dynamics and achieves precise tracking of desired trajectories. Extensive simulations demonstrate the effectiveness of the proposed control strategy in stabilizing the UAV and enabling agile maneuvers, even in the presence of disturbances and model uncertainties. These results highlight the potential of the proposed approach to enhance the robustness and agility of Quadrotor UAVs in real-world applications.


BOUABDALLAH, S.; MURRIERI, P.; SIEGWART, R. Design and control of an indoor micro quadrotor. IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, v. 5, p. 4393-4398, 2004. https://doi: 10.1109/ROBOT.2004.1302409

DAS, A.; LEWIS, F.; SUBBARAO, K. Backstepping Approach for Controlling a Quadrotor Using Lagrange Form Dynamics. J Intell Robot Syst, v. 56, p. 127-151, 2009. https://doi.org/10.1007/s10846-009-9331-0

BOUSBAINE, A.; BAMGBOSE, A.; POYI, G.T.; JOSEPH, K. Design of Self-tuning PID Controller Parameters Using Fuzzy Logic Controller for Quad-rotor Helicopter. International Journal of Trend in Research and Development, v. 3, n. 6, 2016.

Benić, Z.; Piljek, P.; Kotarski, D. Mathematical modelling of Unmanned aerial vehicles with four rotors. Interdisciplinary Description of Complex Systems, v. 14, n. 1, p. 88-100, 2016. https://doi:10.7906/indecs.14.1.9

BOUABDALLAH, S.; SIEGWART, R. Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. IEEE international conference on robotics and automation, p. 2247-2252, 2005. https://doi:10.1109/ROBOT.


BASRI, A.; DANAPALASINGAM, K. A.; HUSAIN, A. R. Design and Optimization of Backstepping controller for an underactuated autonomous Quadrotor unmanned aerial vehicle. Transactions of FAMENA, v. 38, n. 3, p. 27-44, 2014.

BOUADI, H.; BOUCHOUCHA, M.; TADJINE, M. Sliding Mode Control based on Backstepping Approach for an UAV Type-Quadrotor. International Journal of Mechanical and Mechatronics Engineering, v. 1, n. 2, 2007.

NGUYEN, A.T.; TANIGUCHI, T.; ECIOLAZA, L.; CAMPOS, V.; PALHARES R.; SUGENO, M. Fuzzy control systems: Past, present and future. IEEE Computational Intelligence Magazine, v. 14, n. 1, p. 56-68, 2019. https://doi:10.1109/MCI.2018.2881644

Castillo, O.; Melin, P. Type-2 Fuzzy Logic: Theory and Applications. Springer, Studies in Fuzziness and Soft Computing, v. 223, 2008.

Nagaty, A.; Saeedi, S.; Thibault, C.; Seto, M.; Li, H. Control and navigation framework for quadrotor helicopters. Journal of Intelligent and Robotic Systems, v. 70, p. 1-12, 2013.

Al-Younes, Y.; Jarrah, M. A. Attitude stabilization of quadrotor UAV using Backstepping Fuzzy Logic & Backstepping Least-Mean-Square controllers. 5th International Symposium on Mechatronics and Its Applications, Amman, Jordan, p. 1-11, 2008. https://doi:10.1109/ISMA.2008.4648868

Benallegue, A.; Mokhtari, A.; Fridman, L. High order sliding mode observer for a quadrotor UAV. International Journal of Robust and Nonlinear Control: IFAC Affiliated Journal, v. 18, n. 4-5, p. 427-440, 2008. https://doi.org/10.1002/rnc.1225



How to Cite

Benyounes, A., Herizi, A., Zegait, M., Bouras, M., Nail, B., & Tibermacine, I. E. (2024). Fuzzy backstepping control for enhanced stability of a quadrotor unmanned aerial vehicle. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 746–769. https://doi.org/10.54021/seesv5n1-041