Modified SRF theory based on active power filter with quasi-Z-source inverter single-stage PV system

Authors

  • Ahmed Elottri
  • Lakhdar Mzouz
  • Abdellah Kouzou
  • Ali Teta
  • Noureddine Nekbil
  • Fatima Boutouta

DOI:

https://doi.org/10.54021/seesv5n1-028

Keywords:

SAPF, QZSI, PV System, PowerQuality, SBC, MPPT

Abstract

The proliferation of non-linear loads employing semiconductor-based power converters has led to a widespread challenge within electrical grids. This challenge pertains to the degradation of power quality (PQ) due to the emergence of harmonic currents generated by these particular loads. Consequently, numerous researchers have advocated for the adoption of shunt active power filters (APF) to mitigate the impact of these harmonics. This article introduces an enhanced methodology aimed at identifying compensation currents for a shunt active power filter (SAPF). The SAPF operates within a single-stage photovoltaic (PV) system utilizing a quasi-Z-source inverter (qZSI). The primary goals of this technique are to achieve a reduction in total harmonic distortion (THD) by less than 3 percent and to decrease the peak value of the DC-link voltage. The proposed system's efficacy is validated through an extensive simulation conducted using the Matlab/Simulink environment.

References

Abu-Rub, H., Iqbal, A., Ahmed, S. M., Peng, F. Z., Li, Y., & Baoming, G. (2012). Quasi-Z-source inverter-based photovoltaic generation system with maximum power tracking control using ANFIS. IEEE Transactions on Sustainable Energy, 4(1), 11-20.

DOI: 10.1109/TSTE.2012.2196059 DOI: https://doi.org/10.1109/TSTE.2012.2196059

Ali, TETA., REZAOUI, M. M., KOUZOU, A., LAOUID, A. A., & BENSAOUCHA, S. (2018, October). Analysis of reference current identification strategies for shunt active filter under distorted load conditions. In 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM) (pp. 1-6). IEEE.

DOI: 10.1109/CISTEM.2018.8613346 DOI: https://doi.org/10.1109/CISTEM.2018.8613346

Ali, TETA., REZAOUI, M. M., KOUZOU, A., & BENSAOUCHA, S. Comparative Study of Different Control Strategies for Three-Phase Shunt Active Power Filter

Anderson, J., & Peng, F. Z. (2008, June). Four quasi-Z-source inverters. In 2008 IEEE Power Electronics Specialists Conference (pp. 2743-2749). IEEE.

DOI: 10.1109/PESC.2008.4592360 DOI: https://doi.org/10.1109/PESC.2008.4592360

Badra, M. S., Barkat, S., & Bouzidi, M. (2017). Backstepping control of three-phase three-level four-leg shunt active power filter. Journal of Fundamental and Applied Sciences, 9(1), 274-307. DOI: https://doi.org/10.4314/jfas.v9i1.18

4314/jfas.v9i1.18

Benzahia, A., Boualaga, R., Moussi, A., Zellouma, L., Meriem, M., & Chaima, B. (2019). A PV-powered shunt active power filter for power quality improvement. Global Energy Interconnection, 2(2), 143-149.

https://doi.org/10.1016/j.gloei.2019.07.001 DOI: https://doi.org/10.1016/j.gloei.2019.07.001

Boulanouar, S. A., Benaissa, A., Kouzou, A., & Teta, A. (2022, May). Fuzzy Logic Based MPPT for PV System Connected to Shunt Active Power Filter. In 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 726-731). IEEE.

DOI: 10.1109/SSD54932.2022.9955817 DOI: https://doi.org/10.1109/SSD54932.2022.9955817

Cherif, K., Lakhdar, M., Abdellah, K., Ahmed, E., & Djaloul, K. (2022, May). Fuzzy Logic Controller based Maximum Power Point Tracking Using DC/DC Boost Converter for PV System. In 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 1992-1997). IEEE.

DOI: 10.1109/SSD54932.2022.9955835 DOI: https://doi.org/10.1109/SSD54932.2022.9955835

Cherif, K., Lakhdar, M., Ahmed, E. (2022, Nov). Apply Modified PSO Algorithm Technology Based on MPPT of a Photovoltaic System Under Condition Difference. International Journal of Advanced Studies in Computer Science and Engineering (IJASCSE), 11, 11-22.

https://new.ijascse.org/PSO_Algorithm_Technology.pdf

Chomsuwan, K., Prisuwanna, P., & Monyakul, V. (2002, May). Photovoltaic grid-connected inverter using two-switch buck-boost converter. In Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002. (pp. 1527-1530). IEEE.

DOI: 10.1109/PVSC.2002.1190902 DOI: https://doi.org/10.1109/PVSC.2002.1190902

De Brito, M. A. G., Galotto, L., Sampaio, L. P., e Melo, G. D. A., & Canesin, C. A. (2012). Evaluation of the main MPPT techniques for photovoltaic applications. IEEE transactions on industrial electronics, 60(3), 1156-1167.

DOI: 10.1109/TIE.2012.2198036 DOI: https://doi.org/10.1109/TIE.2012.2198036

Hua, C., Lin, J., & Shen, C. (1998). Implementation of a DSP-controlled photovoltaic system with peak power tracking. IEEE transactions on industrial electronics, 45(1), 99-107 DOI: https://doi.org/10.1109/41.661310

Kamel, K., Laid, Z., Abdallah, K., & Anissa, K. (2018, November). Performane of shunt active power filter using STF with PQ strategy in comparison with sogi-based SRF strategy under distorted grid voltage conditions. In International Conference in Artificial Intelligence in Renewable Energetic Systems (pp. 421-428). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-04789-4_45

Kouzou, A., Teta, A., Rezaoui, M. M., & Khadar, S. (2022, March). Interactive PV-Shunt Active Power Filter with Fuzzy-MPPT Controller for Power Quality Improvement. In 2022 5th International Conference on Power Electronics and their Applications (ICPEA) (Vol. 1, pp. 1-5). IEEE.

DOI: 10.1109/ICPEA51060.2022.9791143 DOI: https://doi.org/10.1109/ICPEA51060.2022.9791143

Krama, A., Zellouma, L., Benaissa, A., Rabhi, B., Bouzidi, M., & Benkhoris, M. F. (2019). Design and experimental investigation of predictive direct power control of three-phase shunt active filter with space vector modulation using anti-windup PI controller optimized by PSO. Arabian Journal for Science and Engineering, 44(8), 6741-6755. DOI: https://doi.org/10.1007/s13369-018-3611-6

Lin, W. M., Hong, C. M., & Chen, C. H. (2011). Neural-network-based MPPT control of a stand-alone hybrid power generation system. IEEE transactions on power electronics, 26(12), 3571-3581

DOI: 10.1109/TPEL.2011.2161775 DOI: https://doi.org/10.1109/TPEL.2011.2161775

Liu, Y., Ge, B., Abu-Rub, H., & Sun, D. (2014). Comprehensive modeling of single-phase quasi-Z-source photovoltaic inverter to investigate low-frequency voltage and current ripple. IEEE Transactions on Industrial Electronics, 62(7), 4194-4202.

DOI: 10.1109/TIE.2014.2384472 DOI: https://doi.org/10.1109/TIE.2014.2384472

Rezk, H., & Eltamaly, A. M. (2015). A comprehensive comparison of different MPPT techniques for photovoltaic systems. Solar energy, 112, 1-11.

https://doi.org/10.1016/j.solener.2014.11.010 DOI: https://doi.org/10.1016/j.solener.2014.11.010

Senguttuvan, S., & Vijayakumar, M. (2018). Solar photovoltaic system interfaced shunt active power filter for enhancement of power quality in three-phase distribution system. Journal of Circuits, systems and computers, 27(11), 1850166.

https://doi.org/10.1142/S0218126618501669 DOI: https://doi.org/10.1142/S0218126618501669

Singh, H., Kour, M., Thanki, D. V., & Kumar, P. (2018). A Review on Shunt Active Power Filter Control Strategies. International Journal of Engineering & Technology, 7(4.5), 121-125.‏ DOI: https://doi.org/10.14419/ijet.v7i4.5.20026

TETA, A. Investigation on Active Power Filter based on Z-Source Inverter Topology Dss, University of de Djelfa-Ziane Achour 2021.

http://dspace.univ-djelfa.dz:8080/xmlui/handle/123456789/3801

Teta, A., Kouzou, A., & Rezaoui, M. M. (2019). Modeling and performance analysis of shunt active filter connected with photovoltaic system based on Z-source inverter. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering.

https://doi.org/10.1108/COMPEL-12-2018-0506 DOI: https://doi.org/10.1108/COMPEL-12-2018-0506

Teta, A., Kouzou, A., Rezaoui, M. M., & Abu-Rub, H. (2021, March). Interactive PV-Shunt Active Power Filter based on Impedance Source Inverter Controlled by SRF-MVF. In 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD) (pp. 306-311). IEEE.

DOI: 10.1109/SSD52085.2021.9429460 DOI: https://doi.org/10.1109/SSD52085.2021.9429460

‏ Zhu, W., Shang, L., Li, P., & Guo, H. (2018). Modified hill climbing MPPT algorithm with reduced steady‐state oscillation and improved tracking efficiency. The Journal of Engineering, 2018(17), 1878-1883. DOI: https://doi.org/10.1049/joe.2018.8337

Dahdouh, A., Mazouz, L., Elottri, A., & Youcefa, B. E. (2023). Multivariable Filter-Based New Harmonic Voltage Identification for a 3-Level UPQC. Journal Européen des Systèmes Automatisés, 56(4).‏

DOI: https://doi.org/10.18280/jesa.560405 DOI: https://doi.org/10.18280/jesa.560405

Boutouta, F., Beladel, A., Kouzou, A., Teta, A., & Elottri, A. (2023). Power controlled by Two Type Direct Power Control Quality Improvement of PV Grid-tied based on Two Parallel Inverters. Electrotehnica, Electronica, Automatica, 71(3), 12-22.‏

DOI:10.46904/eea.23.71.3.1108002 DOI: https://doi.org/10.46904/eea.23.71.3.1108002

Published

2024-03-15

How to Cite

Elottri, A., Mzouz , L., Kouzou, A., Teta, A., Nekbil, N., & Boutouta, F. (2024). Modified SRF theory based on active power filter with quasi-Z-source inverter single-stage PV system. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 473–500. https://doi.org/10.54021/seesv5n1-028