Fuzzy predictive controller for trajectory tracking of a wheeled mobile robot

Authors

  • Mohamed Elamine Hedroug
  • El Khansa Bdirina
  • Kamel Guesmi

DOI:

https://doi.org/10.54021/seesv5n1-027

Keywords:

Model predictive control, nonholonomic mobile robot, T-S Fuzzy logic, Fuzzy predictive control, tracking error

Abstract

This paper presents a mobile robot control methodology that uses a fuzzy predictive control system to accurately track given paths. It is specifically designed for scenarios of two successive and distinct paths within a shared reference trajectory. Through the combination of fuzzy logic and predictive control methods, the system aims to significantly enhance tracking accuracy. Modelling the system, using a T-S fuzzy system provides a comprehensive model framework to optimize the tracking process. Furthermore, the use of a well-tuned fuzzy system facilitates dynamic adjustments of the weighting matrices of the predictive controller. The combination of fuzzy logic and predictive techniques results in a robust control system capable of handling complex tracking tasks. The simulation results describe the accuracy, robustness, and efficiency of the suggested control strategy. The system is particularly effective in scenarios with two successive paths within a shared reference trajectory, where precise tracking is essential. This approach is crucial for mobile robots or vehicles navigating complex, changing environments.

References

OLLERO, A.; FERRUZ, J.; SÁNCHEZ, O.; HEREDIA, G. Mobile robot path tracking and visual target tracking using fuzzy logic. Fuzzy Logic Techniques for Autonomous Vehicle Navigation. Chapter. Studies in Fuzziness and Soft Computing, v. 61, p. 51-72, 2001. https://doi.org/10.1007/978-3-7908-1835-2_3

MAUROVIĆ, I.; BAOTIĆ, M.; PETROVIĆ, I. Explicit model predictive control for trajectory tracking with mobile robots. International Conference on Advanced Intelligent Mechatronics (AIM), Budapest, Hungary, p. 712-717, 2011. DOI: 10.1109/AIM.2011.6027140

Kanjanawaniskul, K. Motion control of a wheeled mobile robot using model predictive control: A Survey. KKU Res. J, v. 17, n. 5, p. 811-837, 2012.

Davood Nazari Maryam Abadi, Mohammad Hassan Khooban

ABADI, D. N. M.; KHOOBAN, M. H. Design of optimal Mamdani-type fuzzy controller for nonholonomic wheeled mobile robots. Journal of King Saud University – Engineering Sciences, v. 27, n. 1, p. 92-100, 2013. https://doi.org/10.1016/j.jksues.2013.05.003

SHARMA, K. R.; HONC, D.; DUŠEK, F. (). Model predictive control of trajectory tracking of differentially steered mobile robot. Intelligent Data Analysis and Applications. Chapter. Advances in Intelligent Systems and Computing, v. 370, p. 85-95, 2015. https://doi.org/10.1007/978-3-319-21206-7_8

SHARMA, K. R.; HONC, D.; DUŠEK, F. Predictive control of differential drive mobile robot considering dynamics and kinematics. 30th European Conference on Modelling and Simulation, (ECMS16), Regensburg, Germany, p. 354-360, 2016. DOI:10.7148/2016-0354

ŠKRJANC, I.; KLANČAR, G. A comparison of continuous and discrete tracking-error model-based predictive control for mobile robots. Robotics and Autonomous Systems, v. 87, p. 177-187, 2017. https://doi.org/10.1016/j.

robot.2016.09.016

THINH, N. T.; TUAN, N. T.; HUNG, L.P. Predictive controller for mobile robot based on fuzzy logic. 3rd International Conference on Green Technology and Sustainable Development (GTSD), Kaohsiung, Taiwan, p. 141-144, 2016. DOI: 10.1109/GTSD.2016.41

KUMAR, P.; ANOOHYA, B.; PADHI, R. Model predictive static programming for optimal command tracking: A fast model predictive control paradigm. Journal of Dynamic Systems, Measurement and Control, v. 141, n. 2, p. 021014, 2019. https://doi.org/10.1115/1.4041356

PENG, S.; SHI, W. Adaptive fuzzy integral terminal sliding mode control of a nonholonomic wheeled mobile robot. Mathematical Problems in Engineering, 2017, p. 1-12, 2017. https://doi.org/10.1155/2017/3671846

KRID, M.; BENAMAR, F.; LENAIN, R. A new explicit dynamic path tracking controller using generalized predictive control. International Journal of Control, Automation and Systems, v. 15, p. 303-314, 2017. https://doi.org/10.1007/

s12555-015-0160-6

ALOUACHE, A.; WU, Q. Fuzzy logic PD controller for trajectory tracking of an autonomous differential drive mobile robot (i.e. Quanser Qbot). Industrial Robot: An International Journal, v. 45, n. 1, p. 23-33, 2018. https://doi.org/10.1108/

IR-07-2017-0128

NASCIMENTO, T. P.; DÓREA, C. E. T.; GONÇALVES, L. M. G. Nonlinear model predictive control for trajectory tracking of nonholonomic mobile robots: a modified approach. International Journal of Advanced Robotic Systems, v. 15, n. 1, p. 1-14, 2018. https://doi.org/10.1177/17298814187604

BOUZOUALEGH, S.; GUECHI, E.; KELAIAIA, R.Model predictive control of a differential-drive mobile robot. Acta Universitatis Sapientiae Electrical and Mechanical Engineering, v. 10, n. 1, p. 20-41, 2018. https://doi.org/10.2478/

auseme-2018-0002

CHEN, Y.; KONG, H.; LI, Z.; KE, F. Trajectory-tracking for a mobile robot using robust predictive control and adaptive control. 3rd International Conference on Advanced Robotics and Mechatronics (ICARM), Singapore, Singapore, p. 30-35, 2018. DOI: 10.1109/ICARM.2018.8610695

USHIKOSHI, T. D. A.; PEIXOTO, K. P.; SOUTO, F. H. S.; CHAGAS, T. P. D.; SCHNITMAN, L. Fuzzy maneuvering controller applied to a dynamic model of a differential drive mobile robot. IEEE International Conference on Fuzzy Systems (FUZZ), Rio de Janeiro, Brazil, p. 1-8, 2018. DOI: 10.1109/FUZZ-IEEE.2018.8491684

PENG, S.; SHI, W. Adaptive fuzzy output feedback control of a nonholonomic wheeled mobile robot. IEEE Access, v. 6, p. 43414-43424, 2018. DOI: 10.1109/ACCESS.2018.2862163

BAI, H.; GAO, J.; SUN, X.; YAN, W. Model predictive visual trajectory-tracking control of wheeled mobile robots. IEEE 28th International Symposium on Industrial Electronics (ISIE 2019), Vancouver, Canada, p. 569-574, 2019. DOI: 10.1109/ISIE.2019.8781161

WU, X.; JIN, P.; ZOU, T.; QI, Z.; XIAO, H.; LOU, P. Backstepping trajectory tracking based on fuzzy sliding mode control for differential mobile robots. Journal of Intelligent & Robotic Systems, v. 96, p. 109-121, 2019. https://doi.org/10.

/s10846-019-00980-9

KHAI, T.Q.; RYOO, Y.; GILL, W.; IM, D. Design of kinematic controller based on parameter tuning by fuzzy inference system for trajectory tracking of differential-drive mobile robot. International Journal of Fuzzy Systems, v. 22, p. 1972-1978, 2020. https://doi.org/10.1007/s40815-020-00842-9

ABDELWAHAB, M.; PARQUE, V.; FATH ELBAB, A. M. R.; ABOUELSOUD, A. A.; SUGANO, S. Trajectory tracking of wheeled mobile robots using Z-Number based fuzzy logic. IEEE Access, v. 8, p. 18426-18441, 2020. DOI: 10.1109/ACCESS.2020.2968421

SOMMER, K. D.; BERNER, P.; MÖNNIGMANN, M. Reducing the number of optimization problems in trajectory tracking model predictive control. European Control Conference (ECC), Rotterdam, Netherlands, p. 614- 619, 2021. DOI: 10.23919/ECC54610.2021.9654991

BENCHOUCHE, W.; MELLAH, R.; BENNOUNA, M.S. Navigation of a differential drive mobile robot using nonlinear model predictive control. The 2nd International Conference on Complex Systems and their Applications, Oum El Bouaghi, Algeria, 2021.

MOUDOUD, B.; AISSAOUI, H.; DIANY, M. Fuzzy adaptive sliding mode controller for electrically driven wheeled mobile robot for trajectory tracking task. Journal of Control and Decision, v. 9, n. 1, p. 71-79, 2021. https://doi.org/10.

/23307706.2021.1912665

NOORDIN, A.; RAHMAN, A.A.; ISMAIL, N.A.; SALIM, M.A.; SAAD, A.M.; MASRIPAN, N.A.; HAMID, N.A.; WASBARI, F.; AKOP, M.Z.; KHALIFA, M.S. (). A performance comparison of PID and fuzzy logic control methods for trajectory tracking of wheeled mobile robot. International Journal of Nanoelectronics and Materials, v. 14, n. 1, p. 387-394, 2021. http://dspace.unimap.edu.my:80/xmlui/

handle/123456789/73365

SOUSA, R. L. S.; FORTE, M. D. D. N.; NOGUEIRA, F. G.; TORRICO, B. C. Trajectory tracking control of a nonholonomic mobile robot with differential drive. IEEE Biennial Congress of Argentina (ARGENCON), Buenos Aires, Argentina, 1-6, 2016. DOI: 10.1109/ARGENCON.2016.7585356

HADJILI, M. L.; KARA, K. Modelling and control using takagi-sugeno fuzzy models. Saudi International Electronics, Communications and Photonics Conference (SIECPC), Riyadh, Saudi Arabia, p. 1-6, 2011. DOI: 10.1109/SIEC

PC.2011.5876946

HEDROUG, M. E.; BDIRINA, E.; GUESMI, K. Fuzzy predictive controller for trajectory tracking of differential-drive mobile robot. Proceedings of 2nd International Conference on Electronics, Energy and Measurement (IC2EM’2023), Medea, Algeria, 2023. DOI: 10.1109/IC2EM59347.2023.10419477.

KLANČAR, G.; ŠKRJANC, I. Tracking-error model-based predictive control for mobile robots in real time. Robotics and Autonomous Systems, v. 55, n. 6, p. 460-469, 2007. https://doi.org/10.1016/j.robot.2007.01.002.

Downloads

Published

2024-03-14

How to Cite

Hedroug, M. E., Bdirina, E. K., & Guesmi, K. (2024). Fuzzy predictive controller for trajectory tracking of a wheeled mobile robot. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 449–472. https://doi.org/10.54021/seesv5n1-027