Effect of ultrathin glass substrate on the stability of perovskite CH3NH3PbI3 layer

Authors

  • Aicha Aziza Ayad
  • Abdelkrim Naas
  • Noureddine Selmi
  • Omar Meglali

DOI:

https://doi.org/10.54021/seesv5n1-018

Keywords:

stability, ultrathin glass substrate, perovskite, CH3NH3PbI3

Abstract

In this work, we investigated the effect of two different substrate types on the structural and optical characteristics of the CH3NH3PbI3 perovskite layer: soda-lime glass (SLG) and borosilicate glass (UTG). Subsequently, we examined the samples' stability by measuring their absorbance following 120 hours of exposure to the local ambient conditions in Djelfa, Algeria. The absence of OH groups in the UTG substrate as revealed by FTIR may be the reason for the notable impact of the UTG substrate over the SLG substrate on perovskite characteristics. This absence indicates that the inorganic element's influence on the perovskite significantly diminishes, and in this instance, the matrix endures for an extended period within the local metrological restrictions.

References

JEMLI, Kh. Synthése et auto-assemblage de molécules de pérovskite pour la photonique et le marquage. p. 197. https://theses.hal.science/tel-01291443

WEI, Jing et al. Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. Advanced Energy Materials, v. 11, n. 3, p. 2002326, 2021. https://doi.org/10.1002/aenm.202002326

DERETZIS, I.; ALBERTI, A.; PELLEGRINO, G.; SMECCA, E.; GIANNAZZO, F.; SAKAI, N.; MIYASAKA, T.; LA MAGNA, A. (). Atomistic origins of CH3NH3PbI3 degradation to PbI2 in vacuum. Applied Physics Letters, v. 106, n. 13, 131904, 2015. https://doi.org/10.1063/1.4916821

HONG, Q.-M.; XU, R.-P.; JIN, T.-Y.; TANG, J.-X.; LI, Y.-Q. (). Unraveling the light-induced degradation mechanism of CH3NH3PbI3 perovskite films. Organic Electronics, v. 67, p. 19‑25, 2019. https://doi.org/10.1016/j.orgel.2019.01.005

MOHANTY, I.; MANGAL, S.; JANA, S.; SINGH, Udai. P. Stability factors of perovskite (CH3NH3PbI3) thin films for solar cell applications: A study. Materials Today: Proceedings, v. 39, p. 1829‑1832, 2021. https://doi.org/10.1016/j.matpr.

06.183

OUYANG, Y.; SHI, L.; LI, Q.; WANG, J. (). Role of Water and Defects in Photo‐Oxidative Degradation of Methylammonium Lead Iodide Perovskite. Small Methods, v. 3, n. 7, p. 1900154, 2019. https://doi.org/10.1002/smtd.201900154

DUALEH, A.; GAO, P.; SEOK, S. I.; NAZEERUDDIN, M. K.; Grätzel, M. Chem. Mater., v. 26, p. 61602014. https://doi.org/10.1021/cm502468k

MISRA, R. K.; AHARON, S.; LI, B.; MOGILYANSKY, D.; VISOLY-FISHER, I.; ETGAR, L.; KATZ, E. A.; PHYS. J. Chem. Lett., v. 6, p. 326, 2015. https://doi.org/10.1021/jz502642b

SHEIKH, A. D.; MUNIR, R.; HAQUE, M. A.; BERA, A.; HU, W.; SHAIKH, P.; AMASSIAN, A.; WU, T.; ACS Appl. Mater. Interfaces, v. 9, p. 35018, 2017. https://doi.org/10.1021/acsami.7b11250

ARISTIDOU, N.; SANCHEZ-MOLINA, I.; CHOTCHUANGCHUTCHAVAL, T.; BROWN, M.; MARTINEZ, L.; RATH, T.; HAQUE, S. A. Angew. Chem., v. 127, n. 28, p. 8326-8330, 2015. https://doi.org/10.1002/ange.201503153

PEARSON, A. J.; EPERON, G. E.; HOPKINSON, P. E.; HABISREUTINGER, S. N.; WANG, J. T.-W.; SNAITH H. J.; GREENHAM, N. C. Adv. Energy Mater., v. 6, p. 1600014, 2016. https://doi.org/10.1002/aenm.201600014

LEIJTENS, T.; HOKE, E. T.; GRANCINI, G.; SLOTCAVAGE, D. J.; EPERON, G. E.; BALL, J. M.; DE BASTIANI, M.; BOWRING, A. R.; MARTINO, N.; WOJCIECHOWSKI, K.; MCGEHEE, M. D.; SNAITH, H. J.; PETROZZA, A. Adv. Energy Mater., v. 5, 1500962, 2015. https://doi.org/10.1002/aenm.201500962

ROLSTON, N.; BUSH, K. A.; PRINTZ, A. D.; GOLD-PARKER, A.; DING, Y.; TONEY, M. F.; MCGEHEE, M. D.; DAUSKARDT, R. H. Adv. Energy Mater., v. 8, p. 1802139, 2018. https://doi.org/10.1002/aenm.201802139

ZHAO, J.; DENG, Y.; WEI, H.; ZHENG, X.; YU, Z.; SHAO, Y.; SHIELD, J. E.; HUANG, J. Sci. Adv., v. 3, n. 11, p. 5616, 2017. https://doi.org/10.1126/sciadv.

aao5616

TONG, C.-J.; GENG, W.; TANG, Z.-K.; YAM, C.-Y.; FAN, X.-L.; LIU, J.; LAU, W.-M.; LIU, L.-M. J. Phys. Chem. Lett., v. 6, p. 3289, 2015. https://doi.org/10.1021/acs.jpclett.5b01544

. YAO, C.-L.; LI, J.-C.; GAO, W.; JIANG, Q. J. Phys. Chem. Lett., v. 9, p. 5386, 2018. https://doi.org/10.1021/acs.jpclett.8b02265

HAO, W.; CHEN, X.; LI, S. J. Phys. Chem. C, v. 120, p. 28448, 2016. https://doi.org/10.1021/acs.jpcc.6b09231

Hu, Z.; Li, Q.; Lei, B.; Zhou, Q.; Xiang, D.; Lyu, Z.; Hu, F.; Wang, J.; Ren, Y.; Guo, R.; Goki, E.; Wang, L.; Han, C.; Wang, J.; Chen, W. Angew. Chem., Int. ed., v. 56, p. 9131, 2017. https://doi.org/10.1002/anie.201705012

CHEN, L.-C.; TIEN, C.-H.; JHOU, Y.-C.; & LIN, W.-C. (). Co-Solvent Controllable Engineering of MA0.5FA0.5Pb0.8Sn0.2I3 Lead–Tin Mixed Perovskites for Inverted Perovskite Solar Cells with Improved Stability. Energies, v. 13, n. 10, 2438, 2020. https://doi.org/10.3390/en13102438

KUMAR SINGH, R.; JAIN, N.; SINGH, J.; KUMAR, R. (). Stability behavior of chemically synthesized organic electrolyte salts and methylammonium lead halide perovskite light harvester. Advanced Materials Letters, v. 8, n. 6, p. 707‑711, 2017. https://doi.org/10.5185/amlett.2016.6953

FAN, J.; LIU, C.; LI, H.; ZHANG, C.; LI, W.; MAI, Y. (). Molecular Self-Assembly Fabrication and Carrier Dynamics of Stable and Efficient CH3NH3Pb(1− x )SnxI3 Perovskite Solar Cells. ChemSusChem, v. 10, n. 19, p. 3839‑3845, 2017. https://doi.org/10.1002/cssc.201700880

GORDILLO, G.; TORRES, O. G.; ABELLA, M. C.; PEÑA, J. C.; VIRGUEZ, O. (). Improving the stability of MAPbI3 films by using a new synthesis route. Journal of Materials Research and Technology, v. 9, n. 6, p. 13759‑13769, 2020. https://doi.org/10.1016/j.jmrt.2020.09.095

HU, R.; GE, C.; CHU, L.; FENG, Y.; XIAO, S.; MA, Y.; LIU, W.; LI, X.; NAZEERUDDIN, M. K. (). Novel photoelectric material of perovskite-like (CH3)3SPbI3 nanorod arrays with high stability. Journal of Energy Chemistry, v. 59, p. 581‑588, 2021. https://doi.org/10.1016/j.jechem.2020.12.003

EZIKE, S. C.; ALABI, A. B.; OSSAI, A. N.; AINA, A. O. (). Stability-improved perovskite solar cells through 4-tertbutylpyridine surface-passivated perovskite layer fabricated in ambient air. Optical Materials, v. 112, p. 110753, 2021. https://doi.org/10.1016/j.optmat.2020.110753

ZHANG, Z.; LIU, Y.; ZHANG, P.; MAO, Y. (). Natural passivation of the perovskite layer by oxygen in ambient air to improve the efficiency and stability of perovskite solar cells simultaneously. Organic Electronics, v. 88, p. 106007, 2021. https://doi.org/10.1016/j.orgel.2020.106007

ZHANG, Y.-W.; CHENG, P.-P.; TAN, W.-Y.; MIN, Y. (). Balance the thickness, transparency and stability of semi-transparent perovskite solar cells by solvent engineering and using a bifunctional additive. Applied Surface Science, v. 537, p. 147908, 2021. https://doi.org/10.1016/j.apsusc.2020.147908

ZHONG, M.; CHAI, L.; WANG, Y.; DI, J. (). Enhanced efficiency and stability of perovskite solar cell by adding polymer mixture in perovskite photoactive layer. Journal of Alloys and Compounds, v. 864, p. 158793, 2021. https://doi.org/10.1016/j.jallcom.2021.158793

ZHANG, Y.-W.; CHENG, P.-P.; TAN, W.-Y.; MIN, Y. (). Balance the thickness, transparency and stability of semi-transparent perovskite solar cells by solvent engineering and using a bifunctional additive. Applied Surface Science, v. 537, p. 147908, 2021. https://doi.org/10.1016/j.apsusc.2020.147908

RENITTA, A.; VIJAYALAKSHMI, K. High performance hydrogen sensor based on Mn implanted ZnO nanowires array fabricated on ITO substrate. Materials Science and Engineering: C, v. 77, p. 245-256, 2017. https://doi.org/10.1016/j.msec.2017.03.234

AITAHMED, N.; FORTAS, G.; HAMMACHE, H.; SAM, S.; KEFFOUS, A.; MANSERI, A.; GUERBOUS, L.; GABOUZE N. Structural and morphological study of ZnO thin films electrodeposited on n-type silicon. Applied Surface Science, v. 256, p. 7442-7445, 2010. https://doi.org/10.1016/j.apsusc.2010.05.087

BEN AMEUR, S.; BARHOUMI A.; MIMOUNI R.; AMLOUK, M.; GUERMAZI, H. Lowtemperature growth and physical investigations of undoped and (In, Co) doped ZnO thin films sprayed on PEI flexible substrate. Superlattices and Microstructures, v. 84, p. 99–112, 2015. https://doi.org/10.1016/j.spmi.

04.028

BEN AMEUR, S.; BELHADJLTAIEF, H.; BARHOUMI, A.; DUPONCHEL, B.; LEROY, G.; AMLOUK, M.; GUERMAZI H. Physical investigations and photocatalytic activities on ZnO and SnO2 thin films deposited on flexible polymer substrate. Vacuum, v. 155, p. 546-552, 2018. https://doi.org/10.1016/j.vacuum.

05.051

ID, H. Caractérisation opto-mécanique du verre traité par des méthodes thermo-chimiques. (s. d.). https://theses.hal.science/tel-03436025/document

RIZKY, N. P.; HERNY, A. B.; AGUS, M. H.; SEKARTEDJO; DOTY, D. R. Proc. Eng., v. 170, p. 93, 2017.

BOGUS, G. H.; TRACY, M. A.; ZUKOSI, C. F. J. Non-Cryst Solids, v. 104, n. 95, 1988. https://doi.org/10.1016/0022-3093(88)90187-1

SADEGHI, M.; DORODIAN, M.; REZAEI, M. J. Adv. Chem., v. 6, n. 1, p. 917, 2013. https://doi.org/10.24297/jac.v6i1.5539

PANATARANI, C.; ANGGORO, D.; FAIZAL, F. AIP. Conf. Proc. Eng., v. 1284, p. 77, 2010.

PANATARANI, C.; ANGGORO, D.; JONI, I. M. AIP Conf. Proc., v. 1454, p. 227, 2012.

PANATARANI, C.; JONI, I. M. AIP Conf. Proc., v. 1554, p. 109, 2013.

HULTQVIST, A.; SALOMÉ, P. M.; FJÄLLSTRÖM, V.; EDOFF, M.; AITKEN, B.; ZHANG, K.; SHI, Y.; FULLER K.; WILLIAMS, C. K. Performance of Cu(In,Ga)Se2 solar cells using nominally alkali free glass substrates with varying coefficient of thermal expansion. Journal of Applied Physics, v. 114, n. 9, p. 094501, 2013. https://doi.org/10.1063/1.4819802

REINHARD, P.; CHIRILA, A.; BLOSCH, P.; PIANEZZI, F.; NISHIWAKI, S.; BUECHELERS, S.; TIWARI, A. N. Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. IEEE Journal of Photovoltaics, v. 3, n. 1, p. 572–580, 2013. https://doi.org/10.1109/PVSC-Vol2.2012.6656789

https://infovitrail.com/contenu.php/fr/d/---les-differents-types-de-verre/58b2

c00f-fde8-

KEMERCHOU, I. et al. Study of the Chemical Structure of CH3NH3PbI3 Peroveskite Films Deposited on Different Substrates. Journal of Materials Science: Materials in Electronics, v. 32, n. 3, p. 3303-12, 2021. https://doi.org/10.1007/s10854-020-05078-9

SAMI, A.; DAVID, E.; FRÉCHETTE, M. Procedure for Evaluating the Crystallinity from X-Ray Diffraction Scans of High- and Low-Density Polyethylene/SiO2 Composites. Annual Report Conference on Electrical Insulation and Dielectic Phenomena, IEEE, p. 1-4, 2010. https://10.1109/CEIDP.2010.5724068

HARRIS, G. B. X. Quantitative Measurement of Preferred Orientation in Rolled Uranium Bars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, v. 43, n. 336, p. 113-123, 1952. https://doi.org/10.1080/14786440108520972

RAVICHANDRAN, K.; SAKTHIVEL, B.; PHILOMINATHAN, P. Nanocrystalline Transparent SnO2 -ZnO Films Fabricated at Lower Substrate Temperature Using a Low-Cost and Simplified Spray Technique. Crystal Research and Technology, v. 45, n. 3, p. 292-98, 2010. https://doi.org/10.1002/crat.200900594

MOTE, V. D.; DOLE, B.; PURUSHOTHAM, Y. Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO. Particles. Journal of Theoretical and Applied Physics, v. 6, n. 1, p. 6.48bc-9a00-366d15febd0e, 2012. https://doi.org/10.1186/2251-7235-6-6

MISRA, R. K.; AHARON, S.; LI, B.; MOGILYANSKY, D.; VISOLY-FISHER, I.; ETGAR, L.; KATZ, E. A. Temperature and Component-Dependent Degradation of Perovskite Photovoltaic Materials under Concentrated Sunlight. J. Phys. Chem. Lett., p. 326−330, 2015. https://doi.org/10.1021/jz502642b

NOMADES, Des Clics. Météo à Djelfa en 2021. Historique Météo, https://www.historique meteo.net/afrique/algerie/djelfa/2021.

BANSAL, V.; RAUTARAY, D.; BHARDE, A.; AHIRE, K.; SANYAL, A.; AHMAD, A.; SASTRY, M. J. Mater. Chem. v. 15, p. 2583, 2005

PATEL, B. H.; PATEL, P. N. Research J. Chem. Sci., v. 4, p. 52, 2014. https://www.isca.in/rjcs/Archives/v4/i5/9.ISCA-RJCS-2014-56.pdf

ZHANG, J.; WILKIE, C. A. Preparation and flammability properties of polyethylene-clay nanocomposites. Polymer Degradat. Stab., v. 80, p. 163-169, 2003. http://cat.inist.fr/?aModele=afficheN&cpsidt=1464 2116

ARROYO, M.; LOPEZ-MANCHADO, M. A.; HERRERO, B. Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer, v. 44, p. 2447-2453, 2003. https://10.1016/S0032- 3861(03)00090-9

MONCADA, E.; QUIJADA, R.; RETUERT, J. Nanotech., v. 18, p. 335606, 2007. https://10.1088/0957-4484/18/33/335606

BRADLEY, L. C.; DILWORTH, Z. R.; BARNETTE, A. L.; HSIAO, E.; BARTHEL, A. J.; PANTANO, C. G.; KIM, S. H. (). Hydronium Ions in Soda‐lime Silicate Glass Surfaces. Journal of the American Ceramic Society, v. 96, n. 2, p. 458‑463, 2013. https://doi.org/10.1111/jace.12136

LUO, J.; BAE, S.; YUAN, M.; SCHNEIDER, E.; LANAGAN, M. T.; PANTANO, C. G.; KIM, S. H. (). Chemical structure and mechanical properties of soda lime silica glass surfaces treated by thermal poling in inert and reactive ambient gases. Journal of the American Ceramic Society, v. 101, n. 7, p. 2951‑2964, 2018. https://doi.org/10.1111/jace.15476

RÉBISCOUL, D.; BRUGUIER, F.; MAGNIN, V.; GIN, S. (2012). Impact of soda-lime borosilicate glass composition on water penetration and water structure at the first time of alteration. Journal of Non-Crystalline Solids, v. 358, n. 22, p. 2951‑2960. https://doi.org/10.1016/j.jnoncrysol.2012.07.014

PROFILI, J.; DUROCHER-JEAN, A.; RODRÍGUEZ, I.; LAROCHE, G.; STAFFORD, L. The role of the atmospheric-pressure dielectric barrier discharge regime on the fragmentation of a cyclic siloxane precursor. (s. d.). https://www.ispc-conference.org/ispcproc/ispc23/387.pdf

Downloads

Published

2024-02-19

How to Cite

Ayad, A. A., Naas, A., Selmi, N., & Meglali, O. (2024). Effect of ultrathin glass substrate on the stability of perovskite CH3NH3PbI3 layer. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 306–319. https://doi.org/10.54021/seesv5n1-018