Management stand-alone hybrid renewable energy system based on wind and solar with battery storage

Authors

  • Abdelhak Kechida
  • Djamal Gozim
  • Belgacem Toual
  • Redha Djamel Mohammedi
  • Elbar Mohamed

DOI:

https://doi.org/10.54021/seesv5n1-006

Keywords:

PV, WT, management, hybrid system, MPPT, inverter, converter, standalone, algorithm, PMSG, SOC

Abstract

This paper describes the management of a standalone hybrid energy system (HES) based on two renewable sources. The sun, wind. and the battery supports the system. Solar panels and wind turbines (WT) connected with permanent magnet synchronous generators (PMSG) were used for power production. Power converters have been used together with control algorithms for efficient power management. The filters were used to dispose of the largest amount of harmonics in the inverter. The proposed model provides a strategy for managing energy under various generating conditions. In order to save energy for a fixed load. Proposed hybrid accession simulated with MATLAB/Simulink

References

Bouchebbat, R., & Gherbi, S. (2017). A novel optimal control and management strategy of stand-alone hybrid PV/wind/diesel power system. Journal of Control, Automation and Electrical Systems, 28, 284-296.‏ DOI: https://doi.org/10.1007/s40313-016-0290-y

Boutabba, T., Sahraoui, H., Bechka, M. L., Drid, S., & Chrifi-Alaoui, L. (2021). A Comparative Study of MPPT Techniques for Standalone Hybrid PV-Wind with Power Management. In Proceedings of the 4th International Conference on Electrical Engineering and Control Applications: ICEECA 2019, 17–19 December 2019, Constantine, Algeria (pp. 93-108). Springer Singapore.‏ DOI: https://doi.org/10.1007/978-981-15-6403-1_7

Kumar, P. S., Chandrasena, R. P. S., Ramu, V., Srinivas, G. N., & Babu, K. V. S. M. (2020). Energy management system for small scale hybrid wind solar battery based microgrid. IEEE Access, 8, 8336-8345.‏ DOI: https://doi.org/10.1109/ACCESS.2020.2964052

Mahesh, A., & Sandhu, K. S. (2015). Hybrid wind/photovoltaic energy system developments: Critical review and findings. Renewable and Sustainable Energy Reviews, 52, 1135-1147.‏ DOI: https://doi.org/10.1016/j.rser.2015.08.008

Pati, A., Adhikary, N., Mishra, S. K., Appasani, B., & Ustun, T. S. (2022). Fuzzy logic based energy management for grid connected hybrid PV system. Energy Reports, 8, 751-758.‏ DOI: https://doi.org/10.1016/j.egyr.2022.05.217

Shyni, S. M., & Ramadevi, R. (2019, December). Fuzzy Logic Controller Based Energy Management (FLCBEM) for a Renewable Hybrid System. In 2019 11th International Conference on Advanced Computing (ICoAC) (pp. 333-337). IEEE.‏ DOI: https://doi.org/10.1109/ICoAC48765.2019.246862

Lakhdara, A., Bahi, T., & Moussaoui, A. K. (2021). Control and Management Solar-Wind-Storage Hybrid System. In Artificial Intelligence and Renewables Towards an Energy Transition 4 (pp. 3-14). Springer International Publishing.‏ DOI: https://doi.org/10.1007/978-3-030-63846-7_1

Motahhir, S., El Ghzizal, A., & Derouich, A. (2015). Modélisation et commande d’un panneau photovoltaïque dans l’environnement PSIM (Modeling and Control of a Photovoltaic Panel in the PSIM Environment).‏

Sridhar, R., Jeevananathan, D., ThamizhSelvan, N., & Banerjee, S. (2010). Modeling of PV array and performance enhancement by MPPT algorithm. International Journal of Computer Applications, 7(5), 0975-8887.‏ DOI: https://doi.org/10.5120/1157-1429

Thakur, A., Panigrahi, S., & Behera, R. R. (2016, December). A review on wind energy conversion system and enabling technology. In 2016 International Conference on Electrical Power and Energy Systems (ICEPES) (pp. 527-532). IEEE.‏

Roumila, Z., Rekioua, D., & Rekioua, T. (2017). Energy management based fuzzy logic controller of hybrid system wind/photovoltaic/diesel with storage battery. International Journal of Hydrogen Energy, 42(30), 19525-19535.‏ DOI: https://doi.org/10.1016/j.ijhydene.2017.06.006

Tawfiq, K. B., Mansour, A. S., Ramadan, H. S., Becherif, M., & El-Kholy, E. E. (2019). Wind energy conversion system topologies and converters: Comparative review. Energy Procedia, 162, 38-47.‏ DOI: https://doi.org/10.1016/j.egypro.2019.04.005

Wang, D., Ge, S., Jia, H., Wang, C., Zhou, Y., Lu, N., & Kong, X. (2014). A demand response and battery storage coordination algorithm for providing microgrid tie-line smoothing services. IEEE Transactions on Sustainable Energy, 5(2), 476-486.‏ DOI: https://doi.org/10.1109/TSTE.2013.2293772

Hu, J., Shan, Y., Xu, Y., & Guerrero, J. M. (2019). A coordinated control of hybrid ac/dc microgrids with PV-wind-battery under variable generation and load conditions. International Journal of Electrical Power & Energy Systems, 104, 583-592.‏ DOI: https://doi.org/10.1016/j.ijepes.2018.07.037

Sudha, M. S., & Ramalakshmi, J. (2021). Power Management Strategy in PV-Wind Hybrid System with Cuckoo Search.‏

Merabet, A., Ahmed, K. T., Ibrahim, H., Beguenane, R., & Ghias, A. M. (2016). Energy management and control system for laboratory scale microgrid based wind-PV-battery. IEEE transactions on sustainable energy, 8(1), 145-154.‏ DOI: https://doi.org/10.1109/TSTE.2016.2587828

Published

2024-01-24

How to Cite

Kechida, A., Gozim, D., Toual, B., Mohammedi, R. D., & Mohamed, E. (2024). Management stand-alone hybrid renewable energy system based on wind and solar with battery storage. STUDIES IN ENGINEERING AND EXACT SCIENCES, 5(1), 97–113. https://doi.org/10.54021/seesv5n1-006

Most read articles by the same author(s)