Fotodegradação de antibióticos em efluentes hospitalares

Authors

  • António Armando Lima Sampaio Duarte
  • Mónica Sofia Torres Gonçalves Pereira

DOI:

https://doi.org/10.54020/seasv4n1-015

Keywords:

efluentes hospitalares, antibióticos, fotodegradação, dióxido de titânio, oxitetraciclina

Abstract

A prestação de cuidados de saúde em unidades hospitalares implica um consumo elevado de quantidades de água e medicamentos, produzindo efluentes líquidos com características específicas, que são descarregados para a rede pública de águas residuais, na maioria dos casos sem um pré‑tratamento adequado, contribuindo para a persistência de micropoluentes orgânicos emergentes (e.g., fármacos, disruptores endócrinos, substâncias tóxicas e radioativas) quer nos efluentes das Estações de Tratamento de Águas Residuais (ETAR) urbanas, quer nos meios hídricos recetores, dada a inexistência de tecnologias avançadas para a destoxificação das águas residuais afluentes aos sistemas de tratamento existentes. Numa abordagem holística deste problema ambiental, o trabalho de investigação efetuado iniciou-se com uma caracterização da situação relativa aos sistemas de pré-tratamento existentes nos hospitais portugueses, através de um inquérito às respetivas entidades gestoras, e com uma pesquisa detalhada sobre a eficiência de processos avançados de remoção de antibióticos em ETAR urbanas. Verificando-se que apenas 38% das unidades hospitalares (que responderam ao inquérito) dispõe de um sistema de pré-tratamento, entendeu-se ser pertinente desenvolver um estudo experimental, à escala laboratorial, visando avaliar as potencialidades da aplicação de processos de oxidação avançada (POA) na fotodegrafação de fármacos. Para o efeito, utilizou-se o antibiótico oxitetraciclina (OTC), por pertencer a um dos grupos mais utilizados em clínicas veterinárias e hospitais. Os resultados revelaram uma elevada eficiência de remoção da OTC (96%), obtida em ensaios de fotocatálise (com nanopartículas de TiO2), com radiação UV e um tempo de exposição de uma hora, confirmando as potencialidades deste processo de tratamento na mitigação do risco ambiental associado à crescente ocorrência produtos farmacêuticos nos sistemas fluviais.

References

ADAMS C., WANG Y., LOFTIN K., MEYER M., 2002. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng., 128(3), 253-260.

BEHERA S.K., KIM H.W., OH J.E., PARK H.-S. (2011). Occurrence and removal of antibiotics, hormones, and several other pharmaceuticals in wastewater treatment plants of largest industrial city of Korea. Science of the Total Environment, 409, 4351-4360.

CARVALHO I. & SANTOS L. (2016). Antibiotics in the aquatic environments: A review of the European scenario. Environmental International, 94, 736-757.

CHEN H., LI X., ZHU S. (2012). Occurrence and distribution of selected pharmaceuticals and personal care products in aquatic environments: a comparative study of regions in China with different urbanization levels. Environment Science and Pollution Research, 19(6), 2381-2389.

CHONG, M. N., JIN, B., CHOW, C. W., SAINT, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Reserach, 44 (10), 2997-3027.

DALRYMPLE O.K., YEH D.H., TROTZ M.A. (2007). Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. J. of Chem Tech & Biotech., 82 (2), 121-134.

DANNER M.C, ROBERTSON A, BEHRENDS V., REISS J. (2019). Antibiotic pollution in surface fresh waters: Occurrence and effects. Science of the Total Environment, 664, 793-804.

DIWAN V., TAMHANKAR A.J.; KHANDAL R.K.; SEN S., et al. (2010). Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health, 10, 414.

DUARTE A.A.L.S. & AMORIM M.T.P. (2017). Photocatalytic Treatment Techniques using Titanium Dioxide Nanoparticles for Antibiotic Removal from Water. In: Application of Titanium Dioxide (Chap. 7), 125-146.

FERREIRA S.M.N. (2014). Fotodegradação de micropoluentes orgânicos emergentes. Dissertação de Mestrado Integrado em Engenharia Civil, Universidade do Minho, Braga, Portugal.

GAYA, U. I. & ABDULLA, A. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress, and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (1), 1-12.

GUERRA A.F.B. (2016). Remoção fotocatalítica de micropoluentes em meios porosos funcionalizados. Dissertação de Mestrado Integrado em Engenharia Civil, Universidade do Minho, Braga, Portugal.

GINEBREDA A, MUNOZ I, LOPEZ M, et al. (2010). Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environment International, 36, 153-162.

HAMZA R.A., IORHEMEN O.T., TAY J.H. (2016). Occurrence, impacts and removal of emerging substances of concern from wastewater. Environmental Technology & Innovation, 5, 161-175.

JEAN J., PERRODIN Y., PIVOT C., TREPO D., et. al (2012). Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents. Journal of Environment, 103, 113-121.

KIM I & TANAKA H., 2019 Photodegradation characteristics of PPCPs in water with UV treatment. Environment International, 35(5), 793-802.

KIMURA K., YAMATO N., YAMAMURA H., WATANABE Y., 2005. Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater. Envir. Sci. Technol., 39(16), 6293-6299.

KLAVARIOTI M., MANTZAVINOS D., KASSINOS D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int., 35(2), 402-417.

KOSMA C., LAMBROPOULOU D.A., ALBANIS T.A. (2010). Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. J Hazard Mater., 179(1-3), 804-17.

KÜMMERER K., (2001). Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources - a review. Chesmophere, 45(6), 957-969.

LE CORRE, K. S., ORT, C., KATELEY, et al., (2012). Consumption-based approach for assessing the contribution of hospitals towards the load of pharmaceutical residues in municipal wastewater. Environ. Int., 45, 99-111.

LEE H & KIM I. S. (2018). Nanofibers: emerging progress on fabrication using mechanical force and recent applications. Polym. Rev., 58, 688-716.

LIN A. C. & TSAI Y. T. (2009). Occurrence of pharmaceuticals in Taiwan’s surface water: Impact of waste from hospitals and pharmaceutical production facilities. Sci. Tot. Environ. 407, 3793-3802.

LOFTIN, K.A, ADAMS, C., MEYER, M., SURAMPALLI, R., (2008). Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. J. Environ. Qual., 37 (2), 378–386.

LUO W., HAI F.I., PRICE W.E., et al. (2014). High retention membrane bioreactors: challenges and opportunities. Bioresour. Technol., 167, 539–546.

PAÍGA P, SANTOS L, RAMOS S, et al. (2016). Presence of pharmaceuticals in the Lis river (Portugal): sources, fate and seasonal variation. Sci. Tot. Environ., 573,167-177.

PAUWELS B. & VERSTRAETE W. (2006). The treatment of hospital wastewater: an appraisal. J Water & Health, 4, 405–16.

PENA A., PAULO M., SILVA L.J.G., et al.. (2010). Tetracycline antibiotics in hospital and municipal wastewaters: a pilot study in Portugal. Analytical and Bionalytical Chemistry, 396(8), 2929-2936.

PEREIRA J.H.O.S., REIS A.C., QUEIRÓS D., et al. (2013). Insights into solar TiO₂-assisted photocatalytic oxidation of two antibiotics employed in aquatic animal production, oxolinic acid and oxytetracycline. Sci. of the Total Environment, 463-464, 274-283.

PEREIRA J.H., VILAR V.J., BORGES M.T., GONZÁLEZ O., et al. (2011). Photocatalytic degradation of oxytetracycline using TiO₂ under natural and simulated solar radiation. Solar Energy, 85, 2732-2740.

PÉREZ S.& BARCELÓ D. (2007). Application of advanced MS techniques to analysis and identification of human and microbial metabolites of pharmaceuticals in the aquatic environment. Trends Anal. Chemistry, 26(6), 494–514.

Purnell S., Ebdon J., Buck A., Tupper M., Taylor H., 2015. Bacteriophage removal in a full-scale membrane bioreactor (MBR) - implications for wastewater reuse. Water Research, 73, 109–117.

QUESADA H.B., AAPTISTA A.T.A., CUSIOLI L.F., et al.. (2019). Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere, 222, 766-780.

QUIST-JENSEN C., MACEDONIO F., DRIOLI E., 2015. Membrane technology for water production in agriculture: desalination and wastewater reuse. Desalination, 364, 17–32.

RAO, N., DUBEY, A., MOHANTY, S., et. al (2003). Photocatalytic degradation of 2-chlorophenol: a study of kinetics and biodegradability. J. Haz. Mater., 101 (3), 301-314.

RIZZO L., FIORENTINO A., ANSELMO A. 2013. Advanced treatment of urban wastewater by UV radiation: effect on antibiotics and antibiotic-resistence E. Coli strains. Chemosphere, 92, 171-176.

RONDON H., EL-CHEIKH W., BOLUARTE I.A.R., et al. (2015.) Application of enhanced membrane bioreactor to treat dye wastewater. Bioresour. Technol., 183, 78–85.

SANTOS L.H.M.L.M., GROS M., RODRIGUEZ-MOZAZ S., DELERUE-MATOS C., et al. (2013). Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: Identification of ecologically relevant pharmaceuticals. Science of the Total Environment, 461-4562, 302-316.

VERLICCHI P., AL AUKIDY M., GALLETI A., et al. (2010). Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. Journal of Hydrology, 389, 416-428.

VERLICCHI P., AL AUKIDY M., GALLETI A., PETROVICM., BARCELÓ D. (2012a). Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of the Total Environment, 430, 109-118.

VERLICCHI P., AUKIDY M.A., ZAMBELLO E. (2012b). Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Science of the Total Environment, 429, 123-155.

WANG W., XU Z., ZHANG X, WIMMER A., SHI E., QIN Y, et al. (2018). Rapid and efficient removal of organic micropollutants from environmental water using a magnetic nanoparticles-attached fluorographene-based sorbent. Chem. Eng. J., 343, 61-68.

YE S., YAN M., TAN X., LIANG J., et al. (2019). Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light. Applied Catalysis B-Environmental, 250, 78-88.

YUAN X., FLOWERS R.C., WEINBERG H.S., SINGER P.C. (2011). Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Research, 45, 5218–5228.

Published

2023-12-22

How to Cite

Duarte, A. A. L. S., & Pereira, M. S. T. G. (2023). Fotodegradação de antibióticos em efluentes hospitalares. STUDIES IN ENVIRONMENTAL AND ANIMAL SCIENCES, 4(1), 194–217. https://doi.org/10.54020/seasv4n1-015