Wood waste pellets from sustainable forest management in the Amazon as an energy source


  • Jessica Grama Mesquita
  • Jaily Kerller Batista de Andrade
  • Erick Chagas Mustefaga
  • Nayara Guetten Ribaski
  • Allana Katiussya Silva Pereira
  • Michael Douglas Roque Lima
  • Thiago de Paula Protásio
  • Everton Hillig




Bioenergy Production, Biomass Compaction, ISO 17225–2, Waste Recovery


Waste from sustainable management activities in Amazonia can be an important source of biomass for energy generation. This study aimed to investigate the production and characteristics of pellets manufactured from residual biomass of the species Dinizia excelsa, Parkia spp., and Licania canescens. The pellets were produced separately by species in a laboratory pelletizer with a production capacity of 30 kg h-1 and a matrix diameter of 6 mm. A total of 1.5 kg of homogeneous pellets was produced for each type of biomass. The pellets were evaluated according to their physical and energetic properties. The physical and energetic properties varied between the waste analyzed (4884 kcal kg-1 for D. excelsa and 4650 kcal kg-1 for Parkia spp.). Greater emphasis should be placed on pellets produced with 100DE, which presented higher values of fixed carbon (20.7%), bulk density (692.55 kg m-3) and low ash content (0.30%).


AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM D1762-84: standard method for chemical analyses of wood charcoal. Philadelphia, 2007

ANDRADE, C. R.; DIAS JUNIOR, A. F.; BRITO, J. O.; et al. Waste Wood of Urban Origin for Energy Use. Revista Árvore, v. 41, n. 2, p. 1–8, 2017. https://doi.org/10.1590/1806-90882017000200008. DOI: https://doi.org/10.1590/1806-90882017000200008

BOT, B. V.; AXAOPOULOS, P. J.; SAKELLARIOU, E. I.; SOSSO, O. T.; TAMBA, J. G. Energetic and economic analysis of biomass briquettes production from agricultural residues. Applied Energy, n. 321, p.119430, 2022. https://doi.org/10.1016/j.apenergy.2022.119430. DOI: https://doi.org/10.1016/j.apenergy.2022.119430

BRAND, M. A.; JACINTO, R. C.; ANTUNES, R.; CUNHA, A. B. Production of briquettes as a tool to optimize the use of waste from rice cultivation and industrial processing. Renew. Energy, v. 111, p. 116-123, 2017. DOI: https://doi.org/10.1016/j.renene.2017.03.084

BRAND, M. A.; RODRIGUES, T. M.; SILVA, J. P.; OLIVEIRA, J. Recovery of agricultural and wood wastes: The effect of biomass blends on the quality of pellets. Fuel, v. 284, n. 118881, 2021. https://doi.org/10.1016/J.FUEL.2020.118881. DOI: https://doi.org/10.1016/j.fuel.2020.118881

CARNEIRO, A. C. O.; SOUZA, D. P. L.; PROTÁSIO, T. P. Pelletization of eucalyptus wood and coffee growing wastes: strategies for biomass valorization and sustainable bioenergy production. Renewable Energy, v. 149, p. 128-140, 2020. http://dx.doi.org/10.1016/j.renene.2019.12.015.

CARVALHO, R. S.; ARGUELHO, M. L. P. M.; FACIOLLI, G. G.; et al. Utilização do biocarvão de bagaço de laranja na remoção de tetraciclina em água residuária. Revista Matéria, v. 26, n. 2, 2021. DOI: https://doi.org/10.1590/s1517-707620210002.1280

DEBONI, T. L.; SIMIONI, F. J.; BRAND, M. A.; COSTA, V. J. Models for estimating the price of forest biomass used as an energy source: a Brazilian case. Energy Policy, n. 127 p. 382-391, 2019. https://doi.org/10.1016/j.enpol.2018.12.021. DOI: https://doi.org/10.1016/j.enpol.2018.12.021

DEUTSCHES INSTITUT FÜR NORMUNG, D. I. N. DIN EN 14918: Determination of calorific value. Belim: CEN, 2010b. 63 p.

DIONÍZIO, A. F.; VALE, A. T.; MOREIRA, A. C. O.; et al. Agregação de valor a resíduos agroindustriais para fins energéticos. Revista Ciências Agrárias, v. 42, n. 2, p. 528-538, 2019. https://doi.org/10.19084/rca.15129.

FERREIRA, G.; BRITO, T. M.; SILVA, J. G. M. et al. Wood Waste Pellets as an Alternative for Energy Generation in the Amazon Region. Bioenergy Research, n. 16, p. 472–483, 2023. https://doi.org/10.1007/s12155-022-10446-w DOI: https://doi.org/10.1007/s12155-022-10446-w

GALVANI, F.; OKAMURA, L. A.; SALIS, S. M. Potencial energético das biomassas de canjiqueira e de cambará. Corumbá: EMBRAPA, p. 26, 2021 (Boletim de pesquisa e desenvolvimento, 145).

GARCIA, D. P.; CARASCHI, J. C.; VENTORIM, G.; VIEIRA, F. H. A.; PROTÁSSIO, GARCÍA, R.; GIL, M. V.; RUBIERA, F.; PEVIDA, C. Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel, n. 251 p. 739- 753, 2019. https://doi.org/10.1016/j.fuel.2019.03.141 DOI: https://doi.org/10.1016/j.fuel.2019.03.141

GONDEK, E. Mechanical and combustion properties of sawdust-Straw pellets blended in different proportions. Fuel Processing Technology, n. 156, p. 366–375, 2017. http://dx.doi.org/10.1016/j.fuproc.2016.09.0217

HENRIKSEN, U. B. A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenergy, n. 35, p. 910–8, 2011. https://doi.org/10.1016/j.biombioe.2010.11. 003. DOI: https://doi.org/10.1016/j.biombioe.2010.11.003

INTERNATIONAL ENERGY AGENCY (IEA). Global oil demand shifts lower after historic collapse. Disponível em: https://www.iea.org/fuels-and-technologies/oil. Acesso em: 24 jun. 2023.

INTERTIONAL RENEWABLE ENERGY AGENCY (IRENA). Word Energy Transitions Outlook 2022. Disponível em: https://www.irena.org/Digital-Report/World-Energy-Transitions-Outlook-2022. Acesso em: 24 jun. 2023.

ISO. EN ISO 17828:2015 – Solid biofuels – determination of bulk density. 2015. Disponível em: https://www.iso.org/standard/60687.html.

ISO. EN ISO 17829:2015 – Solid biofuels – determination of length and diameter of pellets. 2015. Disponível em: https://www.iso.org/standard/ 60693.html.

ISO. ISO 17225–2 – Solid biofuels – fuel specifcations and classes – part 2: graded wood pellets. 2021. Available at: https://www.iso.org/stand ard/76088.html. Accessed in 21 May 2024.

JACINTO, R. C.; BRAND, M. A.; CUNHA, A. B.; et al. Utilização de resíduos da cadeia produtiva do pinhão para a produção de pellets para geração de energia. Floresta, v. 47, n. 3, p. 353-363, 2017. https://doi.org/10.5380/rf.v47i1.52080. DOI: https://doi.org/10.5380/rf.v47i3.52080

KRIZˇAN, P.; ŠOOŠ, L.; VUKELIC´, Ð. A study of impact technological parameters on the briquetting process. Facta Universitatis. Ser.: Working Living Environ. Prot, n. 6, p. 39–47, 2009.

LI, Y.; LIU, H. High-pressure densification of wood residues to form an uPAraded fuel. Biomass Bioenergy, n. 19, p. 177–186, 2000. DOI: https://doi.org/10.1016/S0961-9534(00)00026-X

LIMA, M. D. R.; PATRÍCIO, E. P. S.; BARROS JUNIOR, U. O.; et al. Logging wastes from sustainable forest management as alternative fuels for thermochemical conversion systems in Brazilian Amazon. Biomass and Bioenergy, n. 140:105660, 2020. https://doi.org/10.1016/J.BIOMBIOE.2020.105660. DOI: https://doi.org/10.1016/j.biombioe.2020.105660

MOREIRA, J.; CARNEIRO, A.; OLIVEIRA, D.; et al. Thermochemical Properties for Valorization of Amazonian Biomass as Fuel. Energies, v. 15, n. 7343, 2022. https://doi.org/10.3390/EN15197343. DOI: https://doi.org/10.3390/en15197343

MORENO, A. I.; FONT, R.; CONESA, J. A. Physical and chemical evaluation of furniture waste briquettes. Waste Management, v. 49, p. 245-252, 2016. http://dx.doi.org/10.1016/j.wasman.2016.01.048. DOI: https://doi.org/10.1016/j.wasman.2016.01.048

MITCHUAL, S. J.; FRIMPONG-MENSAH, K.; DARKWA, N. A.; AKOWUAH, J. O. Briquetes de espigas de milho e Ceiba pentandra em temperatura ambiente e baixa pressão de compactação sem ligante. Jornal Internacional de Energia e Engenharia Ambiental, v. 4, n. 1, p. 1-7, 2013. DOI: https://doi.org/10.1186/2251-6832-4-38

NEJAT, P.; JOMEHZADEH, F.; TAHERI, M. M.; GOHARI, M.; MUHD, M. Z. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and Sustainable Energy Reviews, n. 43, p. 843–862, 2015. https://doi.org/10.1016/J.RSER.2014.11.066 DOI: https://doi.org/10.1016/j.rser.2014.11.066

PORTILHO, G. R.; CASTRO, V. R.; CARNEIRO, A. C. O.; et al. Potential of Briquette Produced with Torrefied Agroforestry Biomass to Generate Energy. Forest, v. 11, n. 12, 2020. DOI: https://doi.org/10.3390/f11121272

PRADHAN, P.; MAHAJANI, S. M.; ARORA, A. Production and utilization of fuel pellets from biomass: a review. Fuel Process.Technol, n. 181, p. 215-232, 2018. https://doi.org/10.1016/j.fuproc.2018.09.021.

PRADHAN, P.; ARORA, A.; MAHAJANI S. M. Pilot scale evaluation of fuel pellets pro duction from garden waste biomass, Energy Sustain. Dev., n. 43, p. 1–14, 2018. https:// doi.org/10.1016/j.esd.2017.11.005. DOI: https://doi.org/10.1016/j.esd.2017.11.005

PRADHAN, P.; MAHAJANI S. M.; ARORA, A. Production and utilization of fuel pellets from biomass: A review. Fuel Processing Technology, v. 181, p. 215-232, 2018. https://doi.org/10.1016/j.fuproc.2018.09.021. DOI: https://doi.org/10.1016/j.fuproc.2018.09.021

PROTÁSIO, T. P.; BUFALINO, L.; TONOLI, G. H. D.; et al. Brazilian lignocellulosic wastes for bioenergy production: characterization and comparison with fossil fuels. Bioresources, v. 8, p. 1166-1185, 2013. DOI: https://doi.org/10.15376/biores.8.1.1166-1185

SACCOL, A. F. O.; WELTER, C. A.; ROSA, R. C.; et al. Aproveitamento da biomassa florestal na fabricação de briquetes. Revista Matéria, v. 25, n. 2, 2019. https://doi.org/10.1590/S1517-707620200002.1034. DOI: https://doi.org/10.1590/s1517-707620200002.1034

SETTE, C. R.; HANSTED, A. L. S.; NOVAES, E.; LIMA, P. A. F.; RODRIGUES, A.C.; SANTOS, D. R. S.; YAMAJI, F. M. Energy enhancement of the eucalyptus bark by briquette production. Industrial Crops and Products, n. 122, p. 209–213, 2018. https://doi.org/10.1016/J.INDCROP.2018.05.057. DOI: https://doi.org/10.1016/j.indcrop.2018.05.057

SOUZA, E. C.; GOMES, J. P. S.; PIMENTA, A. S.; et al. Briquette production as a sustainable alternative for waste management in the tannin extraction industry. Environmental Science and Pollution Research, n. 30, p. 18078–18090, 2022. https://doi.org/10.1007/s11356-022-23490-y. DOI: https://doi.org/10.1007/s11356-022-23490-y

SOUZA, H. J. P. L.; ARANTES, M. D. C.; VIDAURRE, G. B.; et al. Pelletization of eucalyptus wood and coffee growing wastes: Strategies for biomass valorization and sustainable bioenergy production. Renewable Energy, n. 149, p. 128–140, 2020. https://doi.org/10.1016/J.RENENE.2019.12.015. DOI: https://doi.org/10.1016/j.renene.2019.12.015

STÅHL, M.; GRANSTRÖM, K.; BERGHEL, J.; RENSTRÖM, R. Industrial processes for biomass drying and their effects on the quality properties of wood pellets. Biomass Bioenerg, v. 27, p. 621–628, 2004. https:// doi. Org/10.1016/j.biombioe.2003.08.019. DOI: https://doi.org/10.1016/j.biombioe.2003.08.019

STASIAK, M.; MOLENDA, M.; BAŃDA, M. et al. Mechanical and combustion properties of sawdust-Straw pellets blended in different proportions. Fuel Processing Technology, n. 156, p. 366–375, 2017. http://dx.doi.org/10.1016/j.fuproc.2016.09.021. DOI: https://doi.org/10.1016/j.fuproc.2016.09.021

STELTE, W.; HOLM, J. K.; SANADI, A. R.; BARSBERG, S.; AHRENFELDT, J. T. Comparative energy properties of torrefied pellets in relation to pine and elephant grass pellets. BioResources, n. 13, p. 2898–2906, 2018. DOI: https://doi.org/10.15376/biores.13.2.2898-2906

TUMULURU, J. S. Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosyst. Eng. n. 119, p. 44–57, 2014. https://doi.org/10.1016/j.biosystemseng.2013.11.012. DOI: https://doi.org/10.1016/j.biosystemseng.2013.11.012

TUMULURU, J. S.; TABIL, L. G.; SONG, Y.; IROBA, K. L.; MEDA, V. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes. Bioenergy research, v. 8, n. 1, p. 388–401, 2015. DOI: https://doi.org/10.1007/s12155-014-9527-4

TUMULURU, J. S.; YANCEY, N. A.; KANE, J. J. Pilot-scale grinding and briquetting studies on variable moisture content municipal solid waste bales–Impact on physical properties, chemical composition, and calorific value. Waste Management, v. 125, p. 316-327, 2021. DOI: https://doi.org/10.1016/j.wasman.2021.02.013

ZENG, T.; WELLER, N.; POLLEX, A.; LENZ, V. Blended biomass pellets as fuel for small scale combustion appliances: Influence on gaseous and total particulate matter emissions and applicability of fuel indices. Fuel, v. 184, p. 689–700, 2016. https://doi.org/10.1016/j.fuel.2016.07.047 DOI: https://doi.org/10.1016/j.fuel.2016.07.047




How to Cite

Mesquita, J. G., Andrade, J. K. B. de, Mustefaga, E. C., Ribaski, N. G., Pereira, A. K. S., Lima, M. D. R., Protásio, T. de P., & Hillig, E. (2024). Wood waste pellets from sustainable forest management in the Amazon as an energy source. Caderno Pedagógico, 21(6), e4769. https://doi.org/10.54033/cadpedv21n6-049