O uso de tecnologias emergentes não térmicas para indústria de alimentos: uma revisão sistemática da literatura

Authors

  • Leandro Alves de Souza
  • Letícia Nunes dos Santos
  • Virlane Kelly Lima Hunaldo
  • Bárbara Silva Santana
  • Daniela Souza Ferreira
  • Feliciano do Espirito Santo Silva Neto
  • Hadassa Emilly da Silva Nobre
  • Jaisane Santos Melo Lobato
  • Jorge Cleber Pereira da Silva
  • Kaio Wilquen de Sousa Araújo
  • Leonardo Hunaldo dos Santos
  • Samyla Pereira Cavalcante
  • Thaina Aparecida Jesus Rodrigues de Lima

DOI:

https://doi.org/10.54033/cadpedv21n6-004

Keywords:

Preservação Nutricional, Qualidade, Sustentabilidade, Indústria de Alimentos

Abstract

As tecnologias emergentes são técnicas de processamento com potencial aplicação na indústria de alimentos principalmente com foco em conservação e conquistaram a atenção das indústrias e dos consumidores, principalmente aqueles que buscam frescor em produtos com maior prazo de validade, qualidade, preservação nutricional e sustentabilidade. O presente artigo propõe uma revisão sistemática das tecnologias emergentes não térmicas mais proeminentes na indústria de alimentos, destacando o uso de ultrassom, processamento de alta pressão (HPP) e campos elétricos pulsados (PEF). Onde foi realizada uma busca sistemática na base de dados Science Direct com auxílio do Google Scholar, a fim de ter acesso aos artigos de relevância sobre o principal tema publicados no intervalo de anos entre 2020 a 2024. Após aplicação dos critérios propostos para elegibilidade e exclusão, os artigos relevantes foram incluídos sendo eles 15 estudos onde mostraram as vantagens do uso dessas tecnologias em comparação com métodos térmicos convencionais incluindo menor consumo de energia, preservação de compostos bioativos e melhoria das propriedades funcionais dos alimentos. Explora-se a crescente demanda por métodos sustentáveis na indústria alimentícia, bem como os desafios associados aos processos térmicos tradicionais, como a desnaturação de proteínas e a perda de componentes voláteis. Ao analisar os estudos selecionados, ressalta-se o papel fundamental dessas tecnologias emergentes na promoção da qualidade, segurança e sustentabilidade dos alimentos processados, atendendo às exigências do mercado e às expectativas dos consumidores contemporâneos, onde os estudos revisados forneceram uma compreensão mais aprofundada dos mecanismos de ação e dos efeitos dessas tecnologias emergentes nos alimentos. No entanto, ainda existem desafios a serem enfrentados, como a otimização dos parâmetros de processo, a garantia da segurança dos alimentos e a aceitação do consumidor.

References

ABAD, Vanesa et al. Evaluation of pulsed electric fields (PEF) parameters in the inactivation of anisakis larvae in saline solution and hake meat. Foods, v. 12, n. 2, p. 264, 2023.

AGUIAR, M. M. et al. Alta pressão hidrostática, campos elétricos pulsados e plasma frio na cadeia produtiva de alimentos: Princípios e aplicabilidade industrial. Research, Society and Development, v. 10, n. 2, p. e50310212670-e50310212670, 2021.

AHMADI, Shokouh et al. Increasing RG-I content and lipase inhibitory activity of pectic polysaccharides extracted from goji berry and raspberry by high-pressure processing. Food Hydrocolloids, v. 126, p. 107477, 2022.

ALFALAHI, Ayoob Obaid et al. Ultrasonic treatment enhances germination and affects antioxidant gene expression in soybean (Glycine max L. Merr). Agronomy, v. 12, n. 10, p. 2446, 2022.

AZMIR, Jannatul et al. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of food engineering, v. 117, n. 4, p. 426-436, 2013.

CARDOSO-UGARTE, G. A. et al. Microwave-assisted extraction of betalains from red beet (Beta vulgaris). LWT-Food Science and Technology, v. 59, n. 1, p. 276-282, 2014.

CÁRCEL, J. A. et al. Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, v. 110, n. 2, p. 200-207, 2012.

CHEN, Lei et al. The effect of high-power ultrasound on the rheological properties of strawberry pulp. Ultrasonics sonochemistry, v. 67, p. 105144, 2020.

CHIU, K.-Y. Changes in microstructure, germination, sprout growth, phytochemical and microbial quality of ultrasonication treated adzuki bean seeds. Agronomy, v. 11, n. 6, p. 1093, 2021.

CLAIRAND, J.-M. et al. Review of energy efficiency technologies in the food industry: trends, barriers, and opportunities. IEEE Access, v. 8, p. 48015-48029, 2020.

DE LA PEÑA ARMADA, R.; VILLANUEVA-SUÁREZ, M. J.; MATEOS-APARICIO, I. High hydrostatic pressure processing enhances pectin solubilisation on apple by-product improving techno-functional properties. European Food Research and Technology, v. 246, p. 1691-1702, 2020.

DENG, L.-Z. et al. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes–a comprehensive review. Critical reviews in food science and nutrition, v. 59, n. 9, p. 1408-1432, 2019.

EKEZIE, F.-G. C.; SOL, D.-W.; CHENG, J.-H. Uma revisão sobre os avanços recentes na tecnologia de plasma frio para a indústria alimentícia: aplicações atuais e tendências futuras. Tendências em ciência e tecnologia de alimentos, v. 69, p. 46-58, 2017.

GALANAKIS, C. M. Functionality of food components and emerging technologies. Foods, v. 10, n. 1, p. 128, 2021.

GIANNOGLOU, M. et al. Effect of cold atmospheric plasma and pulsed electromagnetic fields on strawberry quality and shelf-life. Innovative Food Science & Emerging Technologies, v. 68, p. 102631, 2021.

HOU, Z.; CHEN, S.; YE, X. High pressure processing accelarated the release of RG-I pectic polysaccharides from citrus peel. Carbohydrate Polymers, v. 263, p. 118005, 2021.

HOU, Z. et al. Beneficial effects of high pressure processing on the interaction between RG-I pectin and cyanidin-3-glucoside. Food chemistry, v. 383, p. 132373, 2022.

HU, X. et al. Effect of high hydrostatic pressure processing on textural properties and microstructural characterization of fresh‐cut pumpkin (Cucurbita pepo). Journal of food process engineering, v. 43, n. 4, p. e13379, 2020.

HUANG, D. et al. Application of ultrasound technology in the drying of food products. Ultrasonics sonochemistry, v. 63, p. 104950, 2020.

KANG, S. et al. Effects of ultrasonic treatment on the structure, functional properties of chickpea protein isolate and its digestibility in vitro. Foods, v. 11, n. 6, p. 880, 2022.

KHAIRE, R. A.; THORAT, B. N.; GOGATE, P. R. Applications of ultrasound for food preservation and disinfection: A critical review. Journal of Food Processing and Preservation, v. 46, n. 10, p. e16091, 2022.

KOCH, Y. et al. The influence of Pulsed Electric Fields (PEF) on the peeling ability of different fruits and vegetables. Journal of Food Engineering, v. 322, p. 110938, 2022.

KUMARI, B.; SIT, N. Comprehensive review on single and dual modification of starch: Methods, properties and applications. International Journal of Biological Macromolecules, p. 126952, 2023.

KUTLU, N. et al. Impact of different microwave treatments on food texture. Journal of Texture Studies, v. 53, n. 6, p. 709-736, 2022.

LASTA, Heloísa Fabian Battistella et al. Supercritical CO2 to recover extracts enriched in antioxidant compounds from beetroot aerial parts. Biocatalysis and agricultural biotechnology, v. 19, p. 101169, 2019.

MARAN, J. P.; PRIYA, B. Multivariate statistical analysis and optimization of ultrasound-assisted extraction of natural pigments from waste red beet stalks. Journal of food science and technology, v. 53, p. 792-799, 2016.

MARTÍNEZ, J. M. et al. Pulsed electric field‐assisted extraction of valuable compounds from microorganisms. Comprehensive Reviews in Food Science and Food Safety, v. 19, n. 2, p. 530-552, 2020.

MARSZAŁEK, K. et al. Kinetic modelling of tissue enzymes inactivation and degradation of pigments and polyphenols in cloudy carrot and celery juices under supercritical carbon dioxide. The Journal of Supercritical Fluids, v. 117, p. 26-32, 2016.

MATEOS-APARICIO, I. et al. Apple by-product dietary fibre exhibits potential prebiotic and hypolipidemic effectsin high-fat fed Wistar rats. Bioactive carbohydrates and dietary fibre, v. 23, p. 100219, 2020.

MINZ, P. S. et al. Study of heating pattern during heat treatment of milk by ohmic heating. Journal of Pharmacognosy and Phytochemistry, v. 7, n. 2, p. 3033-3036, 2018.

MORALES-DE LA PEÑA, M. et al. Pulsed electric fields technology for healthy food products. Food Engineering Reviews, p. 1-15, 2021.

MORENO-Vilet, L., HERNANDEZ-Hernández, H. M., VILLANUEVA-Rodríguez, S. J. (2018). Current status of emerging food processing technologies in Latin America: Novel thermal processing. Innovative Food Science and Emerging Technologies, 50, 196–206.

NOWACKA, M. et al. The impact of pulsed electric field on the extraction of bioactive compounds from beetroot. Foods, v. 8, n. 7, p. 244, 2019.

NOWOSAD, K. et al. The application of PEF technology in food processing and human nutrition. Journal of Food Science and Technology, v. 58, p. 397-411, 2021.

NUNES, L.; TAVARES, G. M. Thermal treatments and emerging technologies: Impacts on the structure and techno-functional properties of milk proteins. Trends in food science & technology, v. 90, p. 88-99, 2019.

ONITSUKA, C. et al. Inactivation of anisakis larva using pulsed power technology and quality evaluation of horse mackerel meat treated with pulsed power. Fisheries Science, v. 88, n. 2, p. 337-344, 2022.

PACIULLI, M. et al. Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT-Food Science and Technology, v. 68, p. 98-104, 2016.

PARDO, G.; ZUFÍA, J. Life cycle assessment of food-preservation technologies. Journal of Cleaner Production, v. 28, p. 198-207, 2012.

PENG, J. et al. Effect of high hydrostatic pressure pretreatment on physicochemical properties, bioactive components and antioxidant activities of dehydrated yam slices. LWT-Food Science and Technology, v. 198, p. 98-104, 2024.

RAHAMAN, A. et al. Ultrasound based modification and structural-functional analysis of corn and cassava starch. Ultrasonics Sonochemistry, v. 80, p. 105795, 2021.

RATHNAKUMAR, K. et al. Applications of ultrasonication on food enzyme inactivation-Recent review report (2017-2022). Ultrasonics Sonochemistry, p. 106407, 2023.

RIBEIRO, N. G. et al. Dairy foods and novel thermal and non-thermal processing: A bibliometric analysis. Innovative Food Science & Emerging Technologies, v. 76, p. 102934, 2022.

RIVERO, P. et al. Rice starch-alginate systems gelatinised by high hydrostatic pressure (HHP) as dysphagia-oriented matrices. Food hidrocolóides alimentares, V. 151, p: 109793, 2024.

ROSENTHAL, A. et al. Healthy food innovation in sustainable food system 4.0: integration of entrepreneurship, research, and education. Current Opinion in Food Science, v. 42, p. 215-223, 2021.

SHA, L.; XIONG, Y. L. Comparative structural and emulsifying properties of ultrasound-treated pea (Pisum sativum L.) protein isolate and the legumin and vicilin fractions. Food Research International, v. 156, p. 111179, 2022.

SHARAYEI, P. et al. Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. Lwt, v. 101, p. 342-350, 2019.

SILVA, F. V. M.; SULAIMAN, A. Control of enzymatic browning in strawberry, apple, and pear by physical food preservation methods: Comparing ultrasound and high-pressure inactivation of polyphenoloxidase. Foods, v. 11, n. 13, p. 1942, 2022.

SONAWANE, S. K.; PATIL, S. Non-thermal plasma: An advanced technology for food industry. Food Science and Technology International, v. 26, n. 8, p. 727-740, 2020.

SOUZA, B. M. de. Tecnologias emergentes no processo de pasteurização da cerveja: uma revisão. 2021.

SUO, G. et al. Effects of ultrasonic treatment on color, carotenoid content, enzyme activity, rheological properties, and microstructure of pumpkin juice during storage. Ultrasonics Sonochemistry, v. 84, p. 105974, 2022.

SUPASIN, S. et al. Postharvest preservation of Thai mango var. Chok-Anan by the combination of pulsed electric field and chemical pickling. Horticulturae, v. 8, n. 7, p. 584, 2022.

TAN, C. et al. Effects of high hydrostatic pressure on the binding capacity, interaction, and antioxidant activity of the binding products of cyanidin-3-glucoside and blueberry pectin. Food chemistry, v. 344, p. 128731, 2021.

ZHANG, C. et al. Effect of pulsed electric field pretreatment on oil content of potato chips. LWT, v. 135, p. 110198, 2021.

ZHANG, L. et al. Improving soaking efficiency of soybeans through sweeping frequency ultrasound assisted by parameters optimization. Ultrasonics Sonochemistry, v. 79, p. 105794, 2021.

WANG, C. et al. Effects of high hydrostatic pressure on the ordered structure including double helices and V-type single helices of rice starch. International journal of biological macromolecules, v. 144, p. 1034-1042, 2020.

ZHANG, F. et al. Preparation of konjac glucomannan/casein blending gels optimized by response surface methodology and assessment of the effects of high‐pressure processing on their gel properties and structure. Journal of the Science of Food and Agriculture, v. 98, n. 11, p. 4160-4167, 2018.

Published

2024-06-03

How to Cite

Souza , L. A. de, Santos, L. N. dos, Hunaldo, V. K. L., Santana, B. S., Ferreira, D. S., Silva Neto, F. do E. S., Nobre, H. E. da S., Lobato, J. S. M., Silva, J. C. P. da, Araújo, K. W. de S., Santos, L. H. dos, Cavalcante, S. P., & Lima, T. A. J. R. de. (2024). O uso de tecnologias emergentes não térmicas para indústria de alimentos: uma revisão sistemática da literatura. Caderno Pedagógico, 21(6), e4667. https://doi.org/10.54033/cadpedv21n6-004

Issue

Section

Articles