Influence of friction between wood and support elements in the design of timber structures for roofing

Authors

  • Ieda Cardoso Palhares
  • Iuri Fazolin Fraga
  • Herisson Ferreira dos Santos
  • Ludmila de Freitas
  • Matheus Henrique Morato de Moraes
  • Rogerio José Solidario Chaves
  • Francisco Antonio Rocco Lahr
  • André Luis Christoforo

DOI:

https://doi.org/10.54033/cadpedv21n5-166

Keywords:

Wooden Truss, Friction Coefficient, Frictional Force, Roofing

Abstract

Throughout history, wood has played a crucial role in all phases of building construction. Despite existing prejudices in Brazil regarding its use in structural systems, primarily due to the lack of dissemination of technical information, wood is gradually gaining more space in the market as a viable and environmentally sustainable alternative. With exceptional mechanical properties, wood is compatible with other widely used construction materials in the Brazilian structural market, such as concrete and steel. In this context, this research aims to analyze the influence of considering the friction coefficient caused by the sliding of the support with free horizontal displacements in isostatic trusses, investigating its impact on the design of the components that make up the truss. Such sliding generates a lateral friction force that promotes a restraining effect on the structure, potentially relieving stresses on the lower chord members. For this purpose, the Finite Element Method (FEM) is used as an analytical tool, supported by the iTruss verification software to validate the obtained results. By considering the frictional force generated on the support links of the analyzed trusses, the numerical results revealed changes in the design of structural profiles for all existing wood strength classes (D20, D30, D40, D50, and D60) in situations of friction between wood and wood, and between wood and concrete. A reduction in the volume of wooden pieces was observed, ranging from 5.88% to 8.54%, suggesting that the inclusion of the friction coefficient during structural calculations can result in savings, not only from a financial standpoint but also promoting environmental benefits by encouraging a more responsible use of wood in civil construction.

References

ABED, J.; RAYBURG, S.; RODWELL, J.; NEAVE, M. A Review of the Performance and Benefits of Mass Timber as an Alternative to Concrete and Steel for Improving the Sustainability of Structures. Sustainability, v. 14, n. 9, p. 5570, 2022. DOI: https://doi.org/10.3390/su14095570

ABNT NBR 6120. Ações para o cálculo de estruturas de edificações. Associação Brasileira de Normas Técnicas, Rio de Janeiro, 2019.

ABNT NBR 6123. Forças devidas ao vento em edificações. Associação Brasileira de Normas Técnicas, Rio de Janeiro, 2023.

ABNT NBR 7190. Projeto de estruturas de madeira. Associação Brasileira de Normas Técnicas, Rio de Janeiro, 2022.

ABNT NBR 7190-1. Projeto de estruturas de madeira – Parte 1: Critérios de dimensionamento. Associação Brasileira de Normas Técnicas, Rio de Janeiro, 2022.

ABNT NBR 8681. Ações e segurança nas estruturas – Procedimento. Associação Brasileira de Normas Técnicas, Rio de Janeiro, 2003.

ALQRINAWI, H.; AHMED, B.; WU, Q.; et al. Effect of partial delignification and densification on chemical, morphological, and mechanical properties‏ of wood: Structural property evolution. Industrial Crops and Products, v. 213, p. 118430, 2024. DOI: https://doi.org/10.1016/j.indcrop.2024.118430

ARAUJO, V. A.; CORTEZ-BARBOSA, J.; GAVA, M.; et al. Classification of wooden housing building systems. BioResources, v. 11, n. 3, p. 7889–7901, 2016. DOI: https://doi.org/10.15376/biores.11.3.DeAraujo

BARTLETT, A. I.; HADDEN, R. M.; BISBY, L. A. A Review of Factors Affecting the Burning Behaviour of Wood for Application to Tall Timber Construction. Fire Technology, v. 55, p. 1–49, 2019. DOI: https://doi.org/10.1007/s10694-018-0787-y

CALIL JUNIOR, C.; LAHR, F. A. R.; DIAS, A. A.; MARTINS, G. C. A. Estruturas de madeira: Projetos, dimensionamento e exemplos de cálculo. 1o ed. Rio de Janeiro: Elsevier, 2019.

CHEN, C. X.; PIEROBON, F.; GANGULY, I. Life Cycle Assessment (LCA) of Cross-Laminated Timber (CLT) Produced in Western Washington: The Role of Logistics and Wood Species Mix. Sustainability, v. 11, n. 5, p. 1278, 2019. DOI: https://doi.org/10.3390/su11051278

FITZGERALD, D.; SINHA, A.; MILLER, T. H.; NAIRN, J. A. Axial slip-friction connections for cross-laminated timber. Engineering Structures, v. 228, p. 111478, 2021. Elsevier. DOI: https://doi.org/10.1016/j.engstruct.2020.111478

FRAGA, I. F. Influência dos modelos idealizados de ligações no dimensionamento de treliças planas de madeira, 2020. Dissertação, São Carlos: 90 p. Dissertação (Mestrado) – Universidade Federal de São Carlos.

FRAGA, I. F.; CHRISTOFORO, A. L.; LAHR, F. A. R.; et al. Influência dos modelos idealizados de ligações no dimensionamento de treliças Howe de madeira. Revista Principia, v. 59, n. 3, p. 1028–1050, 2022. DOI: https://doi.org/10.18265/1517-0306a2021id5050

HOUGH, R. Rethinking Timber Buildings Seven Perspectives on the Use of Timber in Building Design and Construction. 1o ed. London: ARUP, 2019.

JAARANEN, J.; FINK, G. Frictional behaviour of timber-concrete contact pairs. Construction and Building Materials, v. 243, p. 118273, 2020. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118273

MÖHLER, K.; HERRÖDER, W. Obere und untere Reibbeiwerte von sägerauhem Fichtenholz. Holz als Roh- und Werkstoff, v. 37, n. 1, p. 27–32, 1979. DOI: https://doi.org/10.1007/BF02614998

NEPAL, P.; JOHNSTON, C. M. T.; GANGULY, I. Effects on Global Forests and Wood Product Markets of Increased Demand for Mass Timber. Sustainability, v. 13, n. 24, p. 13943, 2021. DOI: https://doi.org/10.3390/su132413943

OLIVEIRA, L. S. DE; SOTSEK, N. C.; MACHADO, E. L.; et al. Avaliação de desempenho de edificação habitacional: uma comparação do conforto térmico em três sistemas construtivos. Revista Brasileira de Planejamento e Desenvolvimento, v. 12, n. 3, p. 859–882, 2023. DOI: https://doi.org/10.3895/rbpd.v12n3.16090

RAMAGE, M. H.; BURRIDGE, H.; BUSSE-WICHER, M.; et al. The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, v. 68, p. 333–359, 2017. DOI: https://doi.org/10.1016/j.rser.2016.09.107

SANTOS NETO, A. B. S.; LÜBECK, A.; LIMA, R. C. A.; HOPPE, L. F. Análise teórica de vigas de madeira armadas com vergalhões de polímero reforçado com fibra (PRF). IX Sustentável, v. 9, n. 4, p. 87–97, 2023. DOI: https://doi.org/10.29183/2447-3073.MIX2023.v9.n4.87-97

SFS-EN 12812. Eurocode: Falsework. Performance requirements and general design. Standard, Finnish Standards Association, Helsinki, 2008.

SILVA, T. D.; CHRISTOFORO, A. L.; PANZERA, T. H.; MOLINA, J. C.; LAHR, F. A. R. Influence of the timber elastic modulus on the geometric nonlinear structural analysis of truss arches. Revista Árvore, v. 46, p. e4608, 2022. DOI: https://doi.org/10.1590/1806-908820220000008

WAKASHIMA, Y.; ISHIKAWA, K.; SHIMIZU, H.; et al. Dynamic and long-term performance of wood friction connectors for timber shear walls. Engineering Structures, v. 241, p. 112351, 2021. Elsevier. DOI: https://doi.org/10.1016/j.engstruct.2021.112351

Downloads

Published

2024-05-22

How to Cite

Palhares, I. C., Fraga, I. F., Santos, H. F. dos, Freitas, L. de, Moraes, M. H. M. de, Chaves, R. J. S., Lahr, F. A. R., & Christoforo, A. L. (2024). Influence of friction between wood and support elements in the design of timber structures for roofing. Caderno Pedagógico, 21(5), e4058 . https://doi.org/10.54033/cadpedv21n5-166

Issue

Section

Articles