Análisis paramétrico comparativo del comportamiento mecánico de las cerchas planas de madera

Authors

  • Matheus Henrique Morato de Moraes
  • Iuri Fazolin Fraga
  • Wanderlei Malaquias Pereira Junior
  • Francisco Antonio Rocco Lahr
  • André Luis Christoforo

DOI:

https://doi.org/10.54033/cadpedv21n5-056

Keywords:

Fink, Howe, Optimización, Cerchas de Madera, Inteligencia Computacional

Abstract

El diseño de sistema de cubiertas de trecho de madera se aplica generalmente en construcciones de varios tipos, el sistema estructural adoptado es la cercha. La cercha es ampliamente utilizada debido a su versatilidad de dimensionamiento y facilidad de ejecución, con numerosos tipos de cercha. Por lo tanto, es necesario comprender y evaluar el comportamiento a solicitaciones de las distintas tipologías existentes. Para ello, se utilizaron las hipótesis de cálculo establecidos por la norma brasileña de estructuras de madera, los métodos de elementos finitos, un algoritmo de optimización de la inteligencia de enjambre y un estudio paramétrico, con el fin de evaluar y comparar el comportamiento mecánico de dos tipologías de cerchas (Fink y Howe). Se obtuvieron curvas que describen el peso mínimo y el desplazamiento nodal máximo en función del tramo, y se observó que la cercha Howe presentó un peso entre 16 % e 125 % menor con relación a la cercha Fink. En cuanto a los desplazamientos, la tipología Howe presentó valores entre cuatro y seis veces inferiores a la tipología Fink, que señala que la tipología Howe tiene una mejor distribución de los esfuerzos normales y presenta valores máximos de desplazamiento nodal más cercanos al límite normativo verificado por el análisis de varianza con 5 % de significancia.

References

ALMEIDA, J. P. B.; COUTO, N. G.; AQUINO, V. B. de M.; WOLENSKI, A. R. V.; PEIXOTO, R. G.; CHRISTOFORO, A. L.; LAHR, F. A. R. "Relações entre propri-edades de rigidez para distintas solicitações mecânicas visando projetos de estruturas de madeira", Amb Const, v. 20, n. 2, p. 25–35, 2020. DOI: 10.1590/s1678-86212020000200385.

AMARAN, S.; SAHINIDIS, N. V.; SHARDA, B.; BURY, S. J. "Simulation optimi-zation: a review of algorithms and applications", Annals of Operations Re-search, v. 240, n. 1, p. 351–380, 2016. DOI: 10.1007/s10479-015-2019-x.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - ABNT. Madeira ser-rada de coníferas – Dimensões nominais - NBR ISO 3179. Rio de Janeiro – RJ, ABNT, 2011. Disponível em: https://www.abntcatalogo.com.br/norma.aspx?ID=086435.

______. Projeto de estruturas de madeira - NBR 7190. Rio de Janeiro – RJ, ABNT, 1997. Disponível em: https://www.abntcatalogo.com.br/norma.aspx?ID=3395.

BITA, H. M.; TANNERT, T. "Numerical optimisation of novel connection for cross-laminated timber buildings", Eng Struct, v. 175, p. 273–283, 2018. DOI: 10.1016/j.engstruct.2018.08.020.

CHING, H. Y. E. Truss topology optimization of steel-timber structures for embodied carbon objectives. 2020. Master’s thesis – Massachusetts Institute of Technology - MIT, Cambridge, MA, 2020. Disponível em: https://dspace.mit.edu/handle/1721.1/127282.

ENERGY INFORMATION ADMINISTRATION - EIA. Emission of Greenhouse Gases in the United States 2009. . Washington, DC, U.S. Energy Information Administration - EIA, 2011. Disponível em: https://www.eia.gov/environment/emissions/ghg_report/.

FEIRING, B. R.; PHILLIPS, D. T.; HOGG, G. L. "Penalty function techniques: A tutorial", Comput Ind Eng, v. 9, n. 4, p. 307–326, 1985. DOI: 10.1016/0360-8352(85)90019-1.

GANDOMI, A. H.; YANG, X.-S., "Benchmark Problems in Structural Optimiza-tion". In: Koziel, S., Yang, X.-S. (Org.), Computational Optimization, Methods and Algorithms, Studies in Computational Intelligence. Berlin, Heidelberg, Springer Berlin Heidelberg, 2011. v. 356. p. 259–281. DOI: 10.1007/978-3-642-20859-1_12. Disponível em: http://link.springer.com/10.1007/978-3-642-20859-1_12. Acesso em: 16 jul. 2021.

GOMES, A. F. F. Influência do valor médio do módulo de elasticidade à compressão paralela às fibras no projeto de treliças em madeira. 2020. 76 f. Master’s thesis – Universidade Federal de São Carlos - UFSCar, São Carlos - SP, 2020. Disponível em: https://repositorio.ufscar.br/handle/ufscar/13638.

HSU, C. S. "A discrete method of optimal control based upon the cell state space concept", J Optim Theory Appl, v. 46, n. 4, p. 547–569, 1985. DOI: 10.1007/BF00939159.

HUANG, C.; HAMI, A. E.; RADI, B. "Metamodel-based inverse method for pa-rameter identification: elastic–plastic damage model", Eng Optim, v. 49, n. 4, p. 633–653, 2017. DOI: 10.1080/0305215X.2016.1206537.

KUMAR, J. P.; KUMAR, J. D. C.; KUMAR, M. P. "Quantitative Study of Howe Truss (A- Type) and Parallel Chord Scissor Truss (B- Type) by Applying Exter-nal Pre-Stressing", Int J Eng Res, v. 5, n. 1, 2016. DOI: 10.17577/IJERTV5IS010409.

KURI-MORALES, A. F.; GUTIÉRREZ-GARCÍA, J. "Penalty Function Methods for Constrained Optimization with Genetic Algorithms: A Statistical Analysis". 2002. Anais [...] Berlin, Heidelberg, Springer, 2002. p. 108–117. DOI: 10.1007/3-540-46016-0_12.

LEMONGE, A. C. C.; CARVALHO, J. P. G.; HALLAK, P. H.; VARGAS, D. E. C. "Multi-objective truss structural optimization considering natural frequencies of vibration and global stability", Expert Syst Appl, v. 165, p. 113777, 2021. DOI: 10.1016/j.eswa.2020.113777.

LIN, M.-H.; TSAI, J.-F.; YU, C.-S. "A Review of Deterministic Optimization Meth-ods in Engineering and Management", Math Probl Eng, v. 2012, p. 1–15, 2012. DOI: 10.1155/2012/756023.

MAM, K.; DOUTHE, C.; LE ROY, R.; CONSIGNY, F. "Shape optimization of braced frames for tall timber buildings: Influence of semi-rigid connections on design and optimization process", Eng Struct, v. 216, p. 110692, 2020. DOI: 10.1016/j.engstruct.2020.110692.

MAYENCOURT, P. L.; GIRALDO, J. S.; WONG, E.; MUELLER, C. T. "Computa-tional Structural Optimization and Digital Fabrication of Timber Beams", Pro-ceedings of IASS Annual Symposia, v. 2017, n. 17, p. 1–10, 2017. DOI: http://digitalstructures.mit.edu/files/2017-11/1511793600_iass17-paulmayencourt-timberbeams.pdf?e49cc8137a.

MAYENCOURT, P.; MUELLER, C. "Hybrid analytical and computational opti-mization methodology for structural shaping: Material-efficient mass timber beams", Eng Struct, v. 215, p. 110532, 2020. DOI: 10.1016/j.engstruct.2020.110532.

PECH, S.; KANDLER, G.; LUKACEVIC, M.; FÜSSL, J. "Metamodel assisted optimization of glued laminated timber beams by using metaheuristic algo-rithms", Eng Appl Artif Intell, v. 79, p. 129–141, 2019. DOI: 10.1016/j.engappai.2018.12.010.

PEREIRA, L. L. M.; SANTOS, D. C.; MORAES, M. H. M.; GONÇALVES FILHO, G. M.; ANCIOTO JUNIOR, E. M.; PEREIRA JUNIOR, W. M.; DANTAS, M. J. P. "Estudo de Sensibilidade do Algoritmo de Colônia de Vagalumes para um Problema de Engenharia Envolvendo Dimensionamento de Treliças", Tend Mat Apl Comput, v. 21, n. 3, p. 583, 2020. DOI: 10.5540/tema.2020.021.03.583.

SCHIETZOLD, F. N.; GRAF, W.; KALISKE, M. "Multi-objective Optimization of Tree Trunk Axes in Glulam Beam Design Considering Fuzzy Probability Based Random Fields", ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg, 2021. DOI: 10.1115/1.4050370.

SEGOVIA-HERNÁNDEZ, J. G.; HERNÁNDEZ, S.; BONILLA PETRICIOLET, A. "Reactive distillation: A review of optimal design using deterministic and sto-chastic techniques", Chemical Engineering and Processing: Process Inten-sification, v. 97, p. 134–143, 2015. DOI: 10.1016/j.cep.2015.09.004.

ŠILIH, S.; KRAVANJA, S.; PREMROV, M. "Shape and discrete sizing optimiza-tion of timber trusses by considering of joint flexibility", Adv Eng Softw, v. 41, n. 2, p. 286–294, 2010. DOI: 10.1016/j.advengsoft.2009.07.002.

SORŠAK, M.; LESKOVAR, V. Ž.; PREMROV, M.; GORIČANEC, D.; PŠUNDER, I. "Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia", Energy, v. 77, p. 57–65, 2014. DOI: 10.1016/j.energy.2014.04.081.

TALATAHARI, S.; GANDOMI, A. H.; YUN, G. J. "Optimum design of tower struc-tures using Firefly Algorithm", Struct Des Tall Spec Build, v. 23, n. 5, p. 350–361, 2014. DOI: 10.1002/tal.1043.

VILLAR, J. R.; VIDAL, P.; FERNÁNDEZ, M. S.; GUAITA, M. "Genetic algorithm optimisation of heavy timber trusses with dowel joints according to Eurocode 5", Biosyst Eng, v. 144, p. 115–132, 2016. DOI: 10.1016/j.biosystemseng.2016.02.011.

VILLAR-GARCÍA, J. R.; VIDAL-LÓPEZ, P.; RODRÍGUEZ-ROBLES, D.; GUAI-TA, M. "Cost optimisation of glued laminated timber roof structures using genet-ic algorithms", Biosyst Eng, v. 187, p. 258–277, 2019. DOI: 10.1016/j.biosystemseng.2019.09.008.

WANG, H.; WANG, W.; ZHOU, X.; SUN, H.; ZHAO, J.; YU, X.; CUI, Z. "Firefly algorithm with neighborhood attraction", Inf Sci, v. 382–383, p. 374–387, 2017. DOI: 10.1016/j.ins.2016.12.024.

YANG, X.-S. Nature-Inspired Metaheuristic Algorithms. 1o ed. Frome, Luniver Press, 2008. Disponível em: https://dl.acm.org/doi/10.5555/1628847.

YENIAY, Ö. "Penalty Function Methods for Constrained Optimization with Ge-netic Algorithms", Math Comput Appl, v. 10, n. 1, p. 45–56, 2005. DOI: 10.3390/mca10010045.

ZHOU, M.; PAGALDIPTI, N.; THOMAS, H. L.; SHYY, Y. K. "An integrated ap-proach to topology, sizing, and shape optimization", Struct Multidiscipl Optim, v. 26, n. 5, p. 308–317, 2004. DOI: 10.1007/s00158-003-0351-2.

Published

2024-05-09

How to Cite

Moraes, M. H. M. de, Fraga, I. F., Pereira Junior, W. M., Lahr, F. A. R., & Christoforo, A. L. (2024). Análisis paramétrico comparativo del comportamiento mecánico de las cerchas planas de madera. Caderno Pedagógico, 21(5), e3988. https://doi.org/10.54033/cadpedv21n5-056

Issue

Section

Articles