Strength classes of brazilian hardwoods for structural design


  • Larissa Barbosa Fernandes da Silva
  • João Paulo Boff Almeida
  • Leonardo Vinícius Paixão Daciolo
  • Victor Almeida de Araújo
  • André Luís Christoforo
  • Francisco Antonio Rocco Lahr



Mechanical Properties, Timber Structures, Direction Parallel to The Grain, Tropical Woods


For the elaboration of projects on timber structures, the Brazilian standard (ABNT, in Portuguese Associação Brasileira de Normas Técnicas) 7190 (ABNT 1997) ensures the correct application of physical-mechanical properties according to strength classes of lignocellulosic materials. This procedure eliminates the need for botanical identification of woods, since these strength classes support the efficient utilization of a wide range of woody varieties available in Brazil. Due to high mechanical resistances, the hardwoods are usually applied for structural projects of timber construction. This Brazilian standard document prescribes four strength classes (C20, C30, C40 and C60) for these woods, which are determined by characteristic value from the compressive strength parallel to the grain (fc0,k). But, these classes were obtained from experimental outcomes using a few wood varieties. The reorganization of strength classes should result in the best use of mechanical potentials of woods since the updating of these categories leads to the optimization of structural projects for timber construction in order to reposition this biomaterial at even more competitive levels. In this context, the present study aims to verify the current strength classes of hardwoods and if they lead to a good allocation of the fc0,k characteristic values. Otherwise, new strength classes can be determined for better allocations for efficient structural uses. As a result, 56 hardwoods were considered using 672 experimental determinations. Statistically, the current categories can lead to 12,5 % of incorrectly allocated values. The inclusion of C50 and C70 classes allow greater representation for these categories, in order to optimize the use of the hardwoods given the new strength classes. These findings ought to support future revisions of this Brazilian standard document.


ABNT - Associação Brasileira de Normas Técnicas. NBR 7190: Projeto de estruturas de madeira. 107 p., Rio de Janeiro: ABNT 1997.

ALMEIDA, J. P. B.; AQUINO, V. B. M.; WOLENSKI, A. R. V.; CAMPOS, C. I.; CHAHUD, E.; LAHR, F. A. R.; CHRISTOFORO, A. L. Analysis of relations between the moduli of elasticity in compression, tension, and static bending of hardwoods. BioResources, 15(2): 3278-3288, 2020a.

ALMEIDA, J.P.B.; COUTO, N.G.; AQUINO, V.B.M.; WOLENSKI, A.R.V.; PEIXOTO, R.G.; CHRISTOFORO, A.L.; LAHR, F.A.R. Relationship between stiffness properties for different mechanical demands in timber structures design projects. Ambient Constr 20(2): 25-35, 2020b.

ASDRUBALI, F.; FERRACUTI, B.; LOMBARDI., L.; GUATTARI, C.; EVANGELISTI, L.; GRAZIESCHI, G. 2. A review of structural, thermos-physical, acoustical, and environmental properties of wooden materials for building applications. Build Environ 114: 307-332, 2017.

AZMI A.; AHMAD Z.; LUM W.C.; BAHARIN A.; ZA’BA N.I.L.; BHKARI N.M.; LEE S.H. Compressive Strength Characteristic Values of Nine Structural Sized Malaysian Tropical Hardwoods. Forests 13(8):1172, 2022.

BAAR, J.; TIPPNER, J.; RADEMACHER, P. Prediction of mechanical properties – modulus of rupture and modulus of elasticity of five tropical species by nondestructive methods. Maderas-Cienc Tecnol 17(2): 239-252, 2015.

BARRETO, P.; SOUZA JR., C.; NOGUERÓN, R.; ANDERSON, A.; SALOMÃO, R. Human pressure on the Brazilian Amazon forests. Alves Publisher, Belém, Brazil, 2006.

CRUZ, R.B.C.; SANTOS, L.F.; MASCIA, N.T.; SILVA, M.C.A.T. Analysis of a standardized parameter for the design of wooden structures considering structural reliability. Ambient Constr 21(2): 277-294, 2021.

DE ARAUJO, V. Timber construction as a multiple valuable sustainable alternative: main characteristics, challenge remarks and affirmative actions. Int. J. Constr. Manag. 23(8), 1334-1343, 2023.

DE ARAUJO, V.; VASCONCELOS, J.; CORTEZ-BARBOSA, J.; MORALES, E.; CHRISTOFORO, A.; GAVA, M.; LAHR, F.; GARCIA, J. Wood consumption and fixations of carbon dioxide and carbon from timber housing techniques: A Brazilian panorama. Energy Build 216(1), 2020.

European Standard. EN 338: Structural timber – Strength classes, Brussels, Belgium, 2016.

FEARNSIDE, P. M. Amazon Forest maintenance as a source of environmental services. An Acad Bras Ciênc 80(1): 101-114, 2008.

FLORA OF BRAZIL. Flora of Brazil - Under construction, Rio de Janeiro Botanical Garden, Rio de Janeiro, Brazil, 2020.

HUBER, J.A.J.; EKEVAD, M.; GIRHAMMAR, U.A.; Berg, S. Structural robustness and timber buildings – a review. Wood Mater Sci Eng 14(2): 107-128, 2018.

JESUS, J.M.H.; LOGSDON, N.B.; FINGER, Z. Strength classes of resistance of some timbers from Mato Grosso. Engineering and Science 1(3): 35-42, 2015. (In Portuguese).

KUZMAN, M.K.; SANDBERG, D. Comparison of timber-house technologies and initiatives supporting use timber in Slovenia and in Sweden – the state of the art. Iforest 10(6): 930-938, 2017.

LIMA, T.F.P.; ALMEIDA, T.H.; ALMEIDA, D.H.; CHRISTOFORO, A.L.; LAHR, F.A.R. Physical and mechanical properties of Tatajuba wood specie (Bagassa guianensis) from two different Brazilian regions. Rev Mat 23(3), 2018.

LOGSDON, N.B.; DE JESUS, J.H.; PENNA, J.E. Evaluation of the estimators of the characteristic strength to compression parallel to the grain. Scientia Forestalis 38(1): 579-587, 2010.

PRIES, M.; MAI, C. Fire resistance of wood treated with a cationic silica sol. Eur J Wood Wood Prod 71(2): 237-244, 2013.

RAMAGE, M.H.; BURRIDGE, H.; WICHER-BUSSE, M.; FEREDAY, G.; REYNOLDS, T.; SHAH, D.U.; WU, G.; YU, L.; FLEMING, P. The wood from the tress: The use of timber in construction. Renew Sust Energ Rev 68: 333-359, 2017.

SOUZA, A.M.; NASCIMENTO, M.F.; ALMEIDA, D.H.; SILVA, D.A.L.; ALMEIDA, T.H.; CHRISTOFORO, A.L.; LAHR, F.A.R. Wood-based composite made of wood waste and epoxy based ink-waste as adhesive: A cleaner production alternative. J Clean Prod 193: 549-562, 2018.

STAHEL, W.R. The circular economy Nature. Nature 531: 435-438, 2016.

TENORIO, C.; MOYA, R.; NAVARRO-MORA, A. Flooring characteristics of thermo-mechanical densified wood from three hardwood tropical species in Costa Rica. Maderas-Cienc Tecnol 23(16): 1-12, 2021.

TOTSUKA, M.; JOCKWER, R.; AOKI, K.; INAYAMA, M. Experimental study on partial compression parallel to grain of solid timber. J Wood Sci 67: 39, 2021.

STEEGE, H.; VAESSEN, R.W; CÁRDENAS-LÓPEZ, D.; SABATIER, D.; ANTONELLI, A.; OLIVEIRA, S.M.; PITMAN, N.C.A.; JØRGENSEN, P.M.; SALOMÃO, R. P. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Scientific Reports 6: 29549, 2016.

WANG, L.; TOPPINEN, A.; JUSLIN, H. Use of wood in green building: a study of expert perspectives from the UK. J Clean Prod 65: 350-361, 2014.

WEERAHANDI, S. ANOVA under unequal error variances. Biometrics 51(2): 589-599, 1995.

WOLENSKI, A.R.V.; PEIXOTO, R.G.; AQUINO, V.B.M.; CHRISTOFORO, A.L.; LAHR, F.A.R.; PANZERA, T.H. Evaluation of mechanical strengths of tropical hardwoods: proposal of probabilistic models. Eur J Wood Wood Prod 78: 757–766, 2020.

WOLENSKI, A.R.V.; ALMEIDA, J.P.B.; CHRISTOFORO, A.L.; LAHR, F.A.R.; PEIXOTO, R.G. Estimation model of mechanical properties from the compressive strength values. Maderas-Cienc Tecnol 22(4): 483-494, 2020b.


WOLENSKI, A.R.V. Probabilistic Approach to Estimation of Strength and Stiffness Properties for the Design of Wood Structures. Thesis, Federal Universit of Minas Gerais, Belo Horizonte, Brazil, 2022.

ŻMIJEWKI, T.; WOJTOWICZ-JANKOWSKA, D. Timber – material of the future – examples of small wooden architectural structures. Conference Series: Materials Science and Engineering 245(8): 082019, 2017.





How to Cite

Silva, L. B. F. da, Almeida, J. P. B., Daciolo, L. V. P., Araújo, V. A. de, Christoforo, A. L., & Lahr, F. A. R. (2024). Strength classes of brazilian hardwoods for structural design. Caderno Pedagógico, 21(5), e3952.