A proposal for addressing life cycle thinking in the materials engineering course


  • Anárya Teresa de Freitas Rocha
  • Nathalie Barbosa Reis Monteiro
  • Elaine Aparecida da Silva




Interdisciplinarity, Teaching, Curriculum, Engineering, Life Cycle Perspective


This study analyzes the prospects for integrating Life Cycle Thinking (LCT) into the curriculum of the Materials Engineering course. Furthermore, it provides lesson plans to support educators in implementing LCT into their teaching practices. A mapping of the Pedagogical Project of the Materials Engineering Course at the Federal University of Piauí, Brazil, was carried out to identify elements related to LCT. Subsequently, course programs were analyzed to identify those that addressed LCT perspectives or had the potential for inclusion. The analysis was facilitated by a constructed tool, called a guideline, based on the scientific literature on the subject. The Materials Engineering course curriculum is not aligned with sustainability and LCT approaches. A gap was identified between what is proposed in the Pedagogical Project of the Course and the course programs. Thus, there is a need for clear guidelines to support the implementation of LCT in teaching practice, defining what to teach and how to teach it. The exclusivity of this study lies in proposing lesson plans to integrate LCT that were specifically developed for the Materials Engineering course but have the potential to be used and/or adapted for other Engineering courses. The proposal of nine lesson plans for various subjects fills the gap between LCT theory and its practical application in Engineering education. It is essential to prepare future engineers with knowledge and skills to tackle the challenges of a constantly changing world to create a more sustainable future. Limitations should be considered when interpreting the results, such as the lack of practical implementation of proposed lesson plans with students. Therefore, it is recommended to conduct additional studies aiming at practical applications using the LCT approach in engineering education.


ABDELMOEZ, W.; DAHAB, I.; RAGAB, E. M.; ABDELSALAM, O. A.; MUSTAFA, A. Bio‐and oxo‐degradable plastics: insights on facts and challenges. Journals Polymers for advanced Technologies, v. 32, n. 5, p.1981-1996, 2021. DOI: https://doi.org/10.1002/pat.5253

ANASTAS, P. T.; ZIMMERMAN, J. B. Design através dos 12 princípios da engenharia ecológica. Environmental Science & Technology, v. 37, n. 5, p.94A-101A, 2003. DOI: https://doi.org/10.1021/es032373g

AYRES, R. U.; AYRES, L.W. A handbook of industrial ecology. Edward Elgar Publishing, Northampton, MA, 2002. DOI: https://doi.org/10.4337/9781843765479

BAXTER, M. Product Design: Practical methods for the systematic development of new products. CRC Press, 1ª ed, p. 304, 1995.

BAXTER, M. Projeto de produto. Guia prático para o design de novos produtos. Blucher, 3ª ed, p. 344. 2011.

BENOÎT, C.; NORRIS, G. A.; VALDIVIA, S.; CIROTH, A.; MOBERG, A.; BOS, U.; PRAKASH, S.; UGAYA, C.; BECK, T. The guidelines for social life cycle assessment of products: just in time! Int J Life Cycle Assess, v. 15, p.156–163, 2010. DOI: https://doi.org/10.1007/s11367-009-0147-8

BONOU, A.; OLSEN, S. I; HAUSCHILD, M. Z. Introducing life cycle thinking in product development – a case from Siemens Wind Power. CIRP Annals, Manufacturing Technology, v. 64, p. 45–48, 2015. DOI: 10.1016/j.cirp.2015.04.053 DOI: https://doi.org/10.1016/j.cirp.2015.04.053

BONOU, A.; SKELTON, K.; OLSEN, S. I. Ecodesign framework for developing wind turbines. Journal of Cleaner Production, v. 126, p. 643-653, 2016. DOI: 10.1016/j.jclepro.2016.02.093 DOI: https://doi.org/10.1016/j.jclepro.2016.02.093

BRASIL. Projeto pedagógico de reformulação do curso de bacharelado em engenharia de materiais. Centro de Tecnologia, Universidade Federal do Piauí, Teresina, PI, 2018.

BRASIL, RESOLUÇÃO Nº 2, DE 24 DE ABRIL DE 2019. Diretrizes Curriculares Nacionais do Curso de Graduação em Engenharia. 2019. Available at: https://www.in.gov.br/web/dou/-/resolu%C3%87%C3%83o-n%C2%BA-2-de-24-de-abril-de-2019-85344528. Accessed at 31 august 2023.

BURNLEY, S.; WAGLAND, S.; LONGHURST, P. Using life cycle assessment in environmental engineering education. Higher Education Pedagogies, v. 4, n. 1, p. 64-79, 2019. DOI: 10.1080/23752696.2019.1627672 DOI: https://doi.org/10.1080/23752696.2019.1627672

CARETTA, A.; BUA, L.; GAMBARO, C. An application of the Life Cycle Thinking: green refinery enhancements. Fuel, v.1, n. 305, p. 1-10, 2021. DOI: 10.1016/j.fuel.2021.121559 DOI: https://doi.org/10.1016/j.fuel.2021.121559

COSME, N.; HAUSCHILD, M. Z.; MOLIN, C.; ROSENBAUM, R. K.; LAURENT, A. Learning-by-doing: experience from 20 years of teaching LCA to future engineers.

International Journal of Life Cycle Assessment, v. 24, p. 553–565, 2019). DOI: 10.1007/s11367-018-1457-5 DOI: https://doi.org/10.1007/s11367-018-1457-5

DONG, X.; LIU, X.; HOU, Q.; WANG, Z. From natural environment to animal tissues: a review of microplastics (nanoplastics) translocation and hazards studies. Science of the Total Environment, v. 855, p. 1-15, 2023. DOI: 10.1016/j.scitotenv.2022.158686 DOI: https://doi.org/10.1016/j.scitotenv.2022.158686

DOUGLAS, E. P.; CHIU, C. Process-oriented Guided Inquiry Learning in Engineering. Procedia - Social and Behavioral Sciences, v. 56, p. 253-257, 2012. DOI: 10.1016/j.sbspro.2012.09.652 DOI: https://doi.org/10.1016/j.sbspro.2012.09.652

DUARTE, M.; CAEIRO, S. S.; FARINHA, C. S.; MOREIRA, A.; SANTOS-REIS, M.; RIGUEIRO, C.; SIMÃO, J. Integration of sustainability in the curricula of public higher education institutions in Portugal: do strategic plans and self-report align?. International Journal of Sustainability in Higher Education, v. 24, n. 9, p. 299-317, 2023. DOI: 10.1108/IJSHE-01-2023-0001 DOI: https://doi.org/10.1108/IJSHE-01-2023-0001

DUBAUSKIENE, N.; VALINEVICIUS, A.; ANDRIUKAITIS, D.; ZILYS, M.; NAVIKAS, D.; MARKEVICIUS, V.; MERFELDAS, A. Innovative Teaching Methods for Engineering Students. Institute of Electrical and Electronics Engineers, p. 1-4, 2020. DOI: https://doi.org/10.1109/ELEKTRO49696.2020.9130347

EBRAHIMI, S. M.; KOH, L. Manufacturing sustainability: Institutional theory and life cycle thinking. Journal of Cleaner Production, v. 298, p. 1-10, 2021. DOI: 10.1016/j.jclepro.2021.126787 DOI: https://doi.org/10.1016/j.jclepro.2021.126787

ELLEN MACARTHUR FOUNDATION. It’s time for a circular economy. 2024. Available at: https://www.ellenmacarthurfoundation.org/. Accessed 22 february 2024.

FALUDI, J.; GILBERT, C. Best practices for teaching green invention: interviews on design, engineering, and business education. Journal of Cleaner Production, v. 234, p. 1246-1261, 2019. DOI: 10.1016/j.jclepro.2019.06.246 DOI: https://doi.org/10.1016/j.jclepro.2019.06.246

FELGUEIRAS, M. C.; ROCHA, J. S.; CAETANO, N. Engineering education towards sustainability. Energy Procedia, v. 136, p. 414-417, 2017. DOI: 10.1016/j.egypro.2017.10.266 DOI: https://doi.org/10.1016/j.egypro.2017.10.266

Footprint Calculator. (2024). Available at: https://www.footprintcalc.org/. Accessed 27 february 2024.

FURLAN, P. Y.; JARAVATA, E. J.; FURLAN, A. Y.; KAHL, P. Will It Rust? A Set of Simple Demonstrations Illustrating Iron Corrosion Prevention Strategies at Sea. Journal of Chemical Education, v. 100, n. 2, p. 1081-1088, 2023. DOI: 10.1021/acs.jchemed.2c00802 DOI: https://doi.org/10.1021/acs.jchemed.2c00802

GALLEGO-SCHMID, A.; RIVERA, X. C. S.; STAMFORD, L. Introduction of life cycle assessment and sustainability concepts in chemical engineering curricula. International Journal of Sustainability in Higher Education, v. 19, n. 3, p. 442-458, 2018. DOI: 10.1108/IJSHE-09-2017-0146 DOI: https://doi.org/10.1108/IJSHE-09-2017-0146

GILMORE K. R. Teaching life cycle assessment in environmental engineering: a disinfection case study for students. The International Journal of Life Cycle Assessment, v. 21, p.1706-1708, 2016. DOI: 10.1007/s11367-016-1138-1 DOI: https://doi.org/10.1007/s11367-016-1138-1

GINZBURG, A. L.; CHECK, C. E.; HOVEKAMP, D. P.; SILLIN, A. N.; BRETT, J.; ESHELMAN, H.; HUTCHISON, J. E. Experiential learning to promote systems thinking in chemistry: evaluating and designing sustainable products in a polymer immersion lab. Journal of Chemical Education, v. 1, n. 96, p. 2863−2871, 2019. DOI: 10.1021/acs.jchemed.9b00336 DOI: https://doi.org/10.1021/acs.jchemed.9b00336

GRAF, R.; SANDSTRÖM, N.; NEVGI, A.; BALKENENDE, R.; DANESE, P.; GRÖNMAN, K.; HOLOPAINEN, J.; LUUKKONEN, M.; NUORTTILA-JOKINEN, J.; OLSEN, S. I. Education for Optimized Life Cycle Management: the project e-CIRP and its insights into embedding circular economy aspects to product design via teaching. E3S Web of Conferences, v. 349, n. 12003, p.1-7, 2022. DOI: 10.1051/e3sconf/202234912003 DOI: https://doi.org/10.1051/e3sconf/202234912003

GUARNIERI, P. Logística Reversa: em busca do equilíbrio econômico e ambiental. Ed. Clube de Autores, 1ª ed, Recife, Brasil, 2011.

GURON, M.; PAUL, J. J.; ROEDER, M. H. J. Incorporating sustainability and life cycle assessment into first-year inorganic chemistry major laboratories. Chemical Education, v. 93, p.639-644, 2016. DOI: 10.1021/acs.jchemed.5b00281 DOI: https://doi.org/10.1021/acs.jchemed.5b00281

HARRIS, C. E.; PRITCHARD, M. S.; JAMES, R.W.; ENGLEHARDT, E. E.; RABINS, M. J. Engineering Ethics: concepts e cases. Cengage, 6ª ed., p. 1-291, 2019.

HESKETH, R. P.; GREGG, M. H.; SLATER, C.S. Chapter 4 Green engineering education. Sustainability Science and Engineering, v. 1, p. 47-87, 2006. DOI: 10.1016/S1871-2711(06)80011-5 DOI: https://doi.org/10.1016/S1871-2711(06)80011-5

HUGHES, R. The EU Circular Economy package – life cycle thinking to life cycle law?. Procedia CIRP, v. 61, p. 10-16, 2017. DOI: 10.1016/j.procir.2016.12.006 DOI: https://doi.org/10.1016/j.procir.2016.12.006

IKHLAYEL, M. Development of management systems for sustainable municipal solid waste in developing countries: a systematic life cycle thinking approach. Journal of Cleaner Production, v. 180, p. 571-586, 2018. DOI: 10.1016/j.jclepro.2018.01.057 DOI: https://doi.org/10.1016/j.jclepro.2018.01.057

INSTITUTO BRASILEIRO DE INFORMAÇÃO EM CIÊNCIA E TECNOLOGIA – IBICT. Avaliação do Ciclo de Vida. Pensamento do Ciclo de Vida. 2024. Available at: https://acv.ibict.br/acv/pensamento-do-ciclo-de-vida/. Accessed 22 february 2024.

INSTITUTO BRASILEIRO DE INFORMAÇÃO EM CIÊNCIA E TECNOLOGIA – IBICT. Pensamento do ciclo de vida: negócios conscientes à caminho da sustentabilidade. Cuiabá, MT: Sebrae, 2017. Available at: https://acv.ibict.br/wp-content/uploads/2018/08/Pensamento-do-Ciclo-de-Vida-Cartilha.pdf

INGRAO, C.; MESSINEO, A.; BELTRAMO, R.; YIGITCANLAR, T.; IOPPOLO, G. How can life cycle thinking support sustainability of buildings? investigating life cycle

assessment applications for energy efficiency and environmental performance. Journal of Cleaner Production, v. 201, p. 556-569, 2018. DOI: 10.1016/j.jclepro.2018.08.080 DOI: https://doi.org/10.1016/j.jclepro.2018.08.080

ISO 14001. Environmental management systems - Requirements with guidance for use. International Organization for Standardization, Geneva, 2015.

ISO 9001. Quality management systems - Requirements. International Organization for Standardization, Geneva, 2015.

JAGODA, S. U. M.; GAMAGE, J. R.; KARUNATHILAKE, H. P. Environmentally sustainable plastic food packaging: a holistic life cycle thinking approach for design decisions. Journal of Cleaner Production, v. 400, p. 1-17, 2023. DOI: 10.1016/j.jclepro.2023.136680 DOI: https://doi.org/10.1016/j.jclepro.2023.136680

JAISLI, I.; BÄTTIG-FREY, P.; EYMANN, L.; MARIANI, E.; STUCKI, M. Scientainment for sustainability: the eco-confessional as a new approach for life cycle thinking. Sustainability, v. 11, p. 1-14, 2019. DOI: 10.3390/su11205686 DOI: https://doi.org/10.3390/su11205686

KIMEL, R. A.; SINNOTT, S. B. The materials science and engineering undergraduate enrollment floodgates are open. Materials Research Society Bulletin, v. 43, p. 257-261, 2018. DOI: https://doi.org/10.1557/mrs.2018.78

KOLTUNIEWICZ, A. B. Sustainable Process Engineering: Prospects and Opportunities. Walter de Gruyter GmbH & Co KG, 2014. DOI: https://doi.org/10.1515/9783110308761

KORONEOS, C. J.; ACHILLA, C. H.; MOUSSIOPOULOS, N.; NANAKI, E. A. Life Cycle Thinking in the Use of Natural Resources. Open Environmental Sciences, v. 7, p. 1-6, 2013. DOI: https://doi.org/10.2174/1876325101307010001

KRATHWOHL, D. A revision of Bloom’s Taxonomy: an overview. Theory Into Practice, v. 41 n. 4, p. 212–218, 2002. DOI: 10.1207/s15430421tip4104_2 DOI: https://doi.org/10.1207/s15430421tip4104_2

LEARN LIFE CYCLE. Life Cycle Thinking. 2024. Available at: https://www.learnlifecycle.com/. Accessed 22 february 2024.

LESAR, R.; CHEN, K. C.; APELIAN, D. Teaching sustainable development in materials science and engineering. Materials Research Society Bulletin, v. 37, p. 449-454, 2012. DOI: https://doi.org/10.1557/mrs.2012.9

Libâneo, J. C. Didática. Cortez Editora, São Paulo, SP, 1990.

LIN, K. Y.; LEVAN, A.; DOSSICK, C. S. Teaching life-cycle thinking in construction materials and methods: evaluation of and deployment strategies for life-cycle assessment in construction engineering and management education. Journal of Professional Issues in Engineering Education & Practice, v. 138, n. 3, p. 163-170, 2012. DOI: 10.1061/(ASCE)EI.1943-5541.0000106 DOI: https://doi.org/10.1061/(ASCE)EI.1943-5541.0000106

LOPERA, H. A. C.; GUTIÉRREZ-VELÁSQUEZ, E.; BALLESTEROS, N. Bridging the gap between theory and active learning: a case study of project-based learning in

introduction to Materials Science and Engineering. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, v. 17 n. 2, p. 160-169, 2022. DOI: 10.1109/RITA.2022.3166862 DOI: https://doi.org/10.1109/RITA.2022.3166862

MAGODI, A. Y.; DANIYAN, I. A.; MPOFU, K. An investigation of the effect of the ISO 9001 Quality Management System on small and medium enterprises in Gauteng, South Africa. The South African Journal of Industrial Engineering, v. 33 n. 1, p. 126-138, 2022. DOI: 10.7166/33-1-2521 DOI: https://doi.org/10.7166/33-1-2521

MAMMADOV, A.; VALI, V. Promoting life cycle assessment in Azerbaijan. Sustainable Production and Consumption, v. 24, p. 139–149, 2020. DOI: 10.1016/j.spc.2020.07.004 DOI: https://doi.org/10.1016/j.spc.2020.07.004

MANZINI, E., VEZZOLI, C. O desenvolvimento de Produtos Sustentáveis: os requisitos ambientais dos produtos industriais. EDUSP, 3ª ed., p. 1-368, 2011.

MARINELLI, S., LOLLI, F., GAMBERINI, R., RIMINI, B. Life Cycle Thinking (LCT) applied to residential heat pump systems: a critical review. Energy & Buildings, v. 185, p. 210-233, 2019. DOI: 10.1016/j.enbuild.2018.12.035 DOI: https://doi.org/10.1016/j.enbuild.2018.12.035

MARTINAZZO, R., MULLER, C. A., TEIXEIRA, L. C., STUMPF, L., ANTUNES, W. R., METZ, L. E. G.; VALGAS, R. A.; BAMBERG, A. L.; SILVEIRA, C. A. P. Leather-based fertilizers from Personal Protective Equipment (PPE) reverse logistics: technical efficiency and environmental safety. Resources, Conservation & Recycling Advances, v. 18, p. 1-9, 2023. DOI: 10.1016/j.rcradv.2023.200153 DOI: https://doi.org/10.1016/j.rcradv.2023.200153

MILOVANOVIC, J.; SHEALY, T.; KATZ, A. Higher perceived design thinking traits and active learning in design courses motivate engineering students to tackle energy sustainability in their careers. Sustainability, v. 13, n. 12570, p. 1-14, 2021. DOI: 10.3390/su132212570 DOI: https://doi.org/10.3390/su132212570

MONTÉS, N.; ALOY, P.; FERRER, T.; ROMERO, P. D.; BARQUERO, S.; MARTINEZ CARBONELL, A. EXPLORIA, STEAM Education at University Level as a New Way to Teach Engineering Mechanics in an Integrated Learning Process. Applied Sciences, v. 12, n. 10, p. 5105, 2022. DOI: 10.3390/app12105105 DOI: https://doi.org/10.3390/app12105105

MUSIOL, M.; RYDZ, J.; JANECZEK, H.; RADECKA, I.; JIANG, G.; KOWALCZUK, M. Forensic engineering of advanced polymeric materials Part IV: case study of oxo-biodegradable polyethylene commercial bag - aging in biotic and abiotic environment. Waste Management, v. 64, p. 20-27, 2017. DOI: 10.1016/j.wasman.2017.03.043 DOI: https://doi.org/10.1016/j.wasman.2017.03.043

NAÇÕES UNIDAS. Objetivos de Desenvolvimento Sustentável (ODS) - Nações Unidas Brasil. 2024. Available at: https://brasil.un.org/pt-br/sdgs. Accessed 22 february 2024.

NAEINI, H. S.; DALAL, K.; MOSADDAD, S. H.; KARUPPIAH, K. Economic effectiveness of ergonomics interventions. International Journal of Industrial

Engineering & Production Research, v. 29 n. 3, p. 261-276, 2018. DOI: 10.22068/ijiepr.29.3.261

NAPPER, I. E.; THOMPSON, R. C. Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environmental Science & Technology, v. 53 n. 9, p. 4775-4783, 2019. DOI: https://doi.org/10.1021/acs.est.8b06984

NBR ISO 14040. Gestão ambiental – Avaliação do ciclo de vida – Princípios e estrutura. Versão corrigida, Rio de Janeiro, RJ, 2014a.

NBR ISO 14044. Avaliação do Ciclo de Vida – Requisitos e orientações. Versão corrigida, Rio de Janeiro, RJ, 2014b.

NBR ISO 9001. Sistemas de gestão da qualidade – Requisitos. Rio de Janeiro, RJ, 2015.

OLSEN, S. I.; FANTKE, P.; LAURENT, A.; BIRKVED, M.; BEY, N.; HAUSCHILD, M. Z. Sustainability and LCA in engineering education – a course curriculum. Procedia CIRP, v. 69, p. 627-632, 2018. DOI: 10.1016/j.procir.2017.11.114 DOI: https://doi.org/10.1016/j.procir.2017.11.114

ORGANIZAÇÃO DAS NAÇÕES UNIDAS. Transformando Nosso Mundo: a Agenda 2030 para o Desenvolvimento Sustentável. 2015. Available at: https://brasil.un.org/sites/default/files/2020-09/agenda2030-pt-br.pdf. Accessed 31 august 2023.

PEÇAS, P.; RIBEIRO, I.; SILVA, A.; HENRIQUES, E. Comprehensive approach for informed life cycle-based materials selection. Materials and Design, v. 43, p. 220–232, 2013. DOI: 10.1016/j.matdes.2012.06.064 DOI: https://doi.org/10.1016/j.matdes.2012.06.064

PÉREZ-FOGUET, A.; LAZZARINI, B. Continuing professional education in engineering faculties: transversal integration of sustainable human development in basic engineering sciences courses. Journal of Cleaner Production, v. 218, p. 772–781, 2019. DOI: 10.1016/j.jclepro.2019.02.054 DOI: https://doi.org/10.1016/j.jclepro.2019.02.054

PERPIGNAN, C.; BAOUCH, Y.; ROBIN, V.; EYNARD, B. Engineering education perspective for sustainable development: a maturity assessment of cross-disciplinary and advanced technical skills in eco-design. Procedia CIRP, v. 90, p. 758-743, 2020. DOI: 10.1016/j.procir.2020.02.051 DOI: https://doi.org/10.1016/j.procir.2020.02.051

PRABATHA, T.; HEWAGE, K.; KARUNATHILAKE, H.; SADIQ, R. To retrofit or not? making energy retrofit decisions through life cycle thinking for Canadian residences. Energy & Buildings, v. 226, p. 1-25, 2020. DOI: 10.1016/j.enbuild.2020.110393 DOI: https://doi.org/10.1016/j.enbuild.2020.110393

RAMANUJAN, D.; ZHOU, N.; RAMANI, K. Integrating environmental sustainability in undergraduate mechanical engineering courses using guided discovery instruction. Journal of Cleaner Production, v. 207, p. 190-203, 2019. DOI: https://doi.org/10.1016/j.jclepro.2018.09.191

RAMPASSO, I. S.; ANHOLON, R.; SILVA, D.; ORDÓÑEZ, R. E. C.; QUELHAS, L. G.; SANTA-EULÁLIA, L. A. Developing in engineering students a critical analysis about sustainability in productive systems: empirical evidences from an action research experience. International Journal of Sustainability in Higher Education. v. 20 n. 2, p. 229-244, 2019. DOI: 10.1108/IJSHE-03-2018-0048 DOI: https://doi.org/10.1108/IJSHE-03-2018-0048

REDE EMPRESARIAL BRASILEIRA DE AVALIAÇÃO DO CICLO DE VIDA. Estudos e Casos Empresariais. 2024. Available at: https://redeacv.org.br/pt-br/estudos-e-casos-empresariais/. Accessed 23 february 2024.

REYES, K. M. D.; BRUCE, K.; SHETRANJIWALLA, S. Green Chemistry, Life Cycle Assessment, and Systems Thinking: an Integrated Comparative-Complementary Chemical Decision-Making Approach. Journal of Chemical Education, v. 100, p. 209-220, 2023. DOI: 10.1021/acs.jchemed.2c00647 DOI: https://doi.org/10.1021/acs.jchemed.2c00647

RODRIGUES, J. C. Engenharia de Materiais e Meio Ambiente: reciclagem, sustentabilidade, novos processos e desafios. Ponta Grossa: Aya, v. 2, p. 1-123, 2022. DOI: https://doi.org/10.47573/aya.5379.2.111

ROURE, B.; ANAND, C.; BISAILLON, V.; AMOR, B. Systematic curriculum integration of sustainable development using life cycle approaches: the case of the Civil Engineering Department at the Université de Sherbrooke. International Journal of Sustainability in Higher Education, v. 19, n. 3, p. 589-607, 2018. DOI: 10.1108/IJSHE-07-2017-0111 DOI: https://doi.org/10.1108/IJSHE-07-2017-0111

RUIZ-MERCADO, G.; CABEZAS, H. Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes. Butterworth-Heinemann. p. 426, 2016. ISBN 0128020644, 9780128020647

RYBACHUK, M. Teaching advanced materials curriculum through project-based reverse materials engineering product analysis. Journal of Materials Education, v. 42 n. 2, p. 107-108, 2020.

SALATINO, P.; CHIRONE, R.; CLIFT, R. Chemical engineering and industrial ecology: remanufacturing and recycling as process systems. The Canadian Journal oh Chemical Engineering, v. 101, p. 283–294, 2023. DOI: https://doi.org/10.1002/cjce.24625 DOI: https://doi.org/10.1002/cjce.24625

SANCHEZ, L. H. Avaliação de impacto ambiental: conceitos e métodos. São Paulo: Oficina de Textos, 3ª ed., p. 1-485, 2020.

SHARMA, N.; KALBAR, P. P.; SALMAN, M. Global review of circular economy and life cycle thinking in building Demolition Waste Management: a way ahead for India. Building and Environment, v. 222, p. 1-17, 2022. DOI: 10.1016/j.buildenv.2022.109413 DOI: https://doi.org/10.1016/j.buildenv.2022.109413

TAKALA, A.; KORHONEN-YRJANHEIKKI, K. A national collaboration process: finnish engineering education for the benefit of people and environment. Science and Engineering Ethics, v. 19, p. 1557–1569, 2013. DOI: 10.1007/s11948-011-9330-y DOI: https://doi.org/10.1007/s11948-011-9330-y

THEIL, J.; AGUIAR, I.; BANDLA, S.; KAVANAUGH, Y. Materials science community support for teaching sustainability. MRS Energy & Sustainability, v. 8, p. 42–50, 2021. DOI: 10.1557/s43581-021-00009-5 DOI: https://doi.org/10.1557/s43581-021-00009-5

UNITED NATIONS ENVIRONMENT PROGRAMME – UNEP. What is life cycle thinking? United Nations Environment Programme hosted Life Cycle Initiative. 2024. Available at: https://www.lifecycleinitiative.org/activities/what-is-life-cycle-thinking/. Accessed 22 february 2024.

UNITED NATIONS ENVIRONMENT PROGRAMME – UNEP. Single-use supermarket food packaging and its alternatives: Recommendations from Life Cycle Assessments. UNEP Naiorob, 2024.

UNITED NATIONS ENVIRONMENT PROGRAMME – UNEP. Planetary action. 2021. Available at: https://wedocs.unep.org/bitstream/handle/20.500.11822/37946/UNEP_ AR2021.pdf. Accessed 17 february 2024.

UNITED NATIONS ENVIRONMENT PROGRAMME – UNEP. Greening the Economy through Life Cycle Thinking e Ten Years of the UNEP/SETAC Life Cycle Initiative. 2021. Available at: http://www.lifecycleinitiative.o//rg/wpcontent/uploads/2013/03/2012_ LCI_10_years_28.3.13.pdf. Accessed 17 february 2024.

VIERE, T.; AMOR, B.; BERGER, N.; FANOUS, R. D.; ARDUIN, R. H.; KELLER, R.; LAURENT, A.; LOUBET, P.; STROTHMANN, P.; WEYAND, S.; WRIGHT, L.; SONNEMANN, G. Teaching life cycle assessment in higher education. The International Journal of Life Cycle Assessment, v. 26, p. 511–527, 2021. DOI: 10.1007/s11367-020-01844-3 DOI: https://doi.org/10.1007/s11367-020-01844-3

WAARD, E. F.; PRINS, G. T.; VAN JOOLINGEN, W. R. Engaging preuniversity students in sustainability and Life Cycle Assessment in upper-secondary chemistry education: the case of Polylactic Acid (PLA). Journal of Chemical Education, v. 99, p. 2991-2998, 2022. DOI: 10.1021/acs.jchemed.2c00374 DOI: https://doi.org/10.1021/acs.jchemed.2c00374

WANNIARACHCHI, S.; PRABATHA, T.; KARUNATHILAKE, H.; LI, S.; ALAM, M. S.; HEWAGE, K. Life Cycle Thinking–Based Decision Making for Bridges under Seismic Conditions. II: a case study on bridges with superelastic SMA RC piers. Journal of Bridge Engineering, v. 27, n. 6, p. 1-17, 2022. DOI: 10.1061/(ASCE)BE.1943-5592.0001885 DOI: https://doi.org/10.1061/(ASCE)BE.1943-5592.0001885

WHALEN, K. A.; BERLIN, C.; EKBERG, J.; BARLETTA, I.; HAMMERSBERG, P. ‘All they do is win’: Lessons learned from use of a serious game for Circular Economy education. Resources, Conservation & Recycling, v. 135, p. 335-345, 2018. DOI: 10.1016/j.resconrec.2017.06.021 DOI: https://doi.org/10.1016/j.resconrec.2017.06.021

XAVIER, L. S.; PEIXOTO, J. A. A.; SOUZA, C. G.; PONTES, A. T.; FUTURO, D. O. Life cycle thinking in graduate education: an experience from Brazil. International Journal of Life Cycle Assessment, v. 19, p. 1433-1444, 2014. DOI: 10.1007/s11367-014-0749-7 DOI: https://doi.org/10.1007/s11367-014-0749-7

ZHANG, H.; HEWAGE, K.; PRABATHA, T.; SADIQ, R. Life cycle thinking-based energy retrofits evaluation framework for Canadian residences: a pareto optimization approach. Building and Environment, v. 204, p. 1-19, 2021. DOI: 10.1016/j.buildenv.2021.108115 DOI: https://doi.org/10.1016/j.buildenv.2021.108115




How to Cite

Rocha, A. T. de F., Monteiro, N. B. R., & Silva, E. A. da. (2024). A proposal for addressing life cycle thinking in the materials engineering course. Caderno Pedagógico, 21(5), e3882. https://doi.org/10.54033/cadpedv21n5-091