Nature-based Solutions (NbS) for increasing urban greening and reducing runoff flows in narrow streets

Authors

  • Valéria Borges Yonegura
  • Jennifer Domeneghini
  • André Luiz Lopes da Silveira

DOI:

https://doi.org/10.54033/cadpedv21n3-177

Keywords:

Blue-Green Infrastructure, Ecosystem Services, Green Infrastructure, Landscape Connectivity, Landscape Planning

Abstract

When we explore Nature-based Solutions (NbS) and their implementation in small cities with narrow streets and sidewalks as a feature of their historical cores, we can discover several challenges in terms of sustainability and microclimate regulation. The small cities in the Global South differs significantly from that in the Northern Hemisphere, because their financial reality; it is critical for the community, public authorities, and academia to collaborate to find accessible and novel approaches. Fighting floods and enhancing the environment in these tiny cities can begin with the reintroduction of vegetated spaces and their integration with Blue and Green Infrastructures, thereby assisting grey infrastructures in urban landscape planning. This article is an exercise result of the insertion of NbS in Cachoeira do Sul (RS) - Brazil, city located in the Guarani aquifer zone. The use of NbS was intended to increase drainage area, reduce runoff flows, and provide others ecosystem services in an urban street with nearly no vegetation, or spaces for this. The efficacy of the concept was investigated through the LID-TTT program, allowing to suggest its application in others streets and avenues in the same city. We were also able to use it to model other scenarios in the studied section, seeking an increase in permeability, modifying street coverings and walkways. This surge could also occur by building eco-corridors to enhance connectedness among isolated remnant patches in the city (green areas in backyards, squares, and urban edges), resulting in an increase in biodiversity. This paper intends to propose tiny solutions to dealing with recent flooding caused by current extreme weather conditions.

References

Abdeljaber, A., Adghim, M., Abdallah, M., Ghanima, R., & ALjassem, F. (2022). Comparative performance and cost-integrated life cycle assessment of low im-pact development controls for sustainable stormwater manage-ment. Environmental Impact Assessment Review, 95, 106805. https://doi.org/10.1016/j.eiar.2022.106805 DOI: https://doi.org/10.1016/j.eiar.2022.106805

Araújo, P. R., Tucci, C. E. M., & Goldefum, J. A. (1999). Avaliação da eficiência dos pavimentos permeáveis na redução do escoamento superficial [Evaluation of the Efficiency of Permeable Pavements in Reducing Surface Runoff]. Insti-tuto de Pesquisas Hidráulicas da UFRGS.

Benedict, M. A., & McMahon, E. T. (2002). Green infrastructure: smart conser-vation for the 21st century. Renewable resources journal, 20(3), 12-17.

Benedict, M. A., & McMahon, E. T. (2006). Green infrastructure: linking land-scapes and communities. http://ci.nii.ac.jp/ncid/BA81210353

Biswal, Basanta Kumar et al. Nature-based Systems (NbS) for mitigation of stormwater and air pollution in urban areas: A review. (2022). Resources, Conservation and Recycling, v. 186, p. 106578. DOI: https://doi.org/10.1016/j.resconrec.2022.106578

Chang, N. B., Lu, J. W., Chui, T. F. M., & Hartshorn, N. (2018). Global policy analysis of low impact development for stormwater management in urban re-gions. Land use policy, 70, 368-383. https://doi.org/10.1016/j.landusepol.2017.11.024 DOI: https://doi.org/10.1016/j.landusepol.2017.11.024

Christensen, N. L., Bartuska, A. M., Brown, J. H., Carpenter, S., d'Antonio, C., Francis, R., ... & Woodmansee, R. G. (1996). The report of the Ecological Socie-ty of America committee on the scientific basis for ecosystem manage-ment. Ecological applications, 6(3), 665-691. https://doi.org/10.2307/2269460 DOI: https://doi.org/10.2307/2269460

CPTEC - Centro de Previsão de Tempo e Estudos Climáticos (n. d.). Previsão do Tempo - Cachoeira do Sul, RS. https://www.cptec.inpe.br/rs/cachoeira-do-sul

Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (2016). Nature-based solutions to address global societal challenges. IUCN: Gland, Switzer-land, 97, 2016-2036. https://doi.org/10.2305/iucn.ch.2016.13.en DOI: https://doi.org/10.2305/IUCN.CH.2016.13.en

Cohen-Shacham, E., Andrade, A., Dalton, J., Dudley, N., Jones, M., Kumar, C., ... & Walters, G. (2019). Core principles for successfully implementing and up-scaling Nature-based Solutions. Environmental Science & Policy, 98, 20-29. https://doi.org/10.1016/j.envsci.2019.04.014 DOI: https://doi.org/10.1016/j.envsci.2019.04.014

Cooper, R. (2020). Nature-based solutions and water security. K4D Helpdesk Report 813. Brighton, UK: Institute of Development Studies.

Escobedo, F. J., Giannico, V., Jim, C. Y., Sanesi, G., & Lafortezza, R. (2019). Urban forests, ecosystem services, green infrastructure and nature-based solu-tions: Nexus or evolving metaphors?. Urban Forestry & Urban Greening, 37, 3-12. https://doi.org/10.1016/j.ufug.2018.02.011 DOI: https://doi.org/10.1016/j.ufug.2018.02.011

Fletcher, Tim D. et al. (2015). SUDS, LID, BMPs, WSUD and more–The evolu-tion and application of terminology surrounding urban drainage. Urban water journal, v. 12, n. 7, p. 525-542. DOI: https://doi.org/10.1080/1573062X.2014.916314

IBGE - Instituto Brasileiro de Geografia e Estatística (2023). Panorama - Ca-choeira do Sul, RS, Brasil.https://cidades.ibge.gov.br/brasil/rs/cachoeira-do-sul/panorama

INMET - Instituto Nacional de Meteorologia (n. d.). Página Inicial. https://portal.inmet.gov.br/

Global Goals (n. d.). Goal 11: Sustainable Cities and Communities. https://www.globalgoals.org/goals/11-sustainable-cities-and-communities

Lamarque, P., Quetier, F., & Lavorel, S. (2011). The diversity of the ecosystem services concept and its implications for their assessment and management. Comptes rendus biologies, 334(5-6), 441-449. https://doi.org/10.1016/j.crvi.2010.11.007 DOI: https://doi.org/10.1016/j.crvi.2010.11.007

Liao, K. H. (2019). The socio-ecological practice of building blue-green infra-structure in high-density cities: what does the ABC Waters Program in Singa-pore tell us?. Socio-Ecological Practice Research, 1(1), 67-81. https://doi.org/10.1007/s42532-019-00009-3 DOI: https://doi.org/10.1007/s42532-019-00009-3

Machado, J. L. F. (2005). Compartimentação Espacial e Arcabouço Hidroestra-tigráfico do Sistema Aquífero Guarani no Rio Grande do Sul [Spatial Com-partmentalization and Hydrostratigraphic Framework of the Guarani Aquifer System in Rio Grande do Sul].238 p. Tese (Doutorado em Geologia). – Progra-ma de Pós-Graduação em Geologia Sedimentar, Universidade do Vale do Rio dos Sinos (UNISINOS). São Leopoldo (RS).

Marostica, S. D., Yonegura, V. B., Domeneghini, J., & Silveira, A. L. L. D. (2023). Potencialidades do programa LID TTT no estudo de caso de Porto Ale-gre, RS Brasil [Potentials of the LID TTT Program in the Case Study of Porto Alegre, RS, Brazil]. In Congreso Latinoamericano de Hidraulica (30.: 2022:[Foz do Iguaçu]). Anales del XXX Congreso Latinoamericano de Hidráulica 2022: volúmen 5: ingeniería e infraestructuras hidráulicas [recurso eletrônico]. Madrid: IAHR, 2023.

Pauleit, Stephan et al. (2017). Nature-based solutions and climate change–four shades of green. Nature-based solutions to climate change adaptation in urban areas: Linkages between science, policy and practice, p. 29-49. DOI: https://doi.org/10.1007/978-3-319-56091-5_3

Pohlmann, V., & Lazzari, M. (2018). Caracterização climática de Cachoeira do Sul, RS quanto à temperatura do ar [Climate characterization of Cachoeira do Sul, RS regarding air temperature]. Revista Eletrônica Científica da UERGS, 4(5), 643-650. DOI: https://doi.org/10.21674/2448-0479.45.643-650

Pugliese, Francesco et al. (2022). Enhancing the urban resilience to flood risk through a decision support tool for the LID-BMPs optimal design. Water Re-sources Management, v. 36, n. 14, p. 5633-5654. DOI: https://doi.org/10.1007/s11269-022-03322-x

Reid, W. V., Mooney, H. A., Cropper, A., Capistrano, D., Carpenter, S. R., Cho-pra, K., ... & Zurek, M. B. (2005). Ecosystems and human well-being-Synthesis: A report of the Millennium Ecosystem Assessment. Island Press.

Solos, E. (2013). Sistema brasileiro de classificação de solos [Brazilian system of soil classification]. Centro Nacional de Pesquisa de Solos: Rio de Janeiro, 3.

STEP - Sustainable Technologies: Evaluation Program. (2022). LOW IMPACT DEVELOPMENT TREATMENT TRAIN TOOL, “SOFTWARE LID TTT”. https://sustainabletechnologies.ca/lid-ttt/

Studio Aurora. (n.d.). Fotografia da rua 7 de setembro [Septemberb7 street photography]. https://prati.com.br/cachoeira-do-sul/cachoeira-do-sul-avenida-sete-de-setembro.html#comments

Schuh, A. S. (1991). Cachoeira do Sul: em busca de sua história [Cachoeira do Sul: in search of its history]. Martins Livreiro-Editor.

Tucci, Carlos EM. (2005). Gestão de águas pluviais urbanas. Programa de Modernização do Setor Saneamento, Secretaria Nacional de Saneamento Ambiental, Ministério das Cidades.

U.S. Green Building Council. (2023). Homes Table 8: Common Runoff Coeffi-cients. U.S. Green Building Council. https://www.usgbc.org/resources/homes-table-8-common-runoff-coefficients

Vedelago, A. (2014). Adubação para a soja em terras baixas drenadas no Rio Grande do Sul [Fertilization for soybean in drained lowlands in Rio Grande do Sul]. https://lume.ufrgs.br/handle/10183/108193

Wong, T. H., Fletcher, T. D., Duncan, H. P., & Jenkins, G. A. (2006). Modelling urban stormwater treatment—A unified approach. Ecological Engineer-ing, 27(1), 58-70. https://doi.org/10.1016/j.ecoleng.2005.10.014 DOI: https://doi.org/10.1016/j.ecoleng.2005.10.014

WWAP (United Nations World Water Assessment Programme)/UN-Water. (2018). The United Nations World Water Development Report 2018: Nature-Based Solutions for Water. Paris, UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000261424/PDF/261424eng.pdf.multi

Published

2024-03-25

How to Cite

Yonegura, V. B., Domeneghini, J., & Silveira, A. L. L. da. (2024). Nature-based Solutions (NbS) for increasing urban greening and reducing runoff flows in narrow streets. Caderno Pedagógico, 21(3), e3373. https://doi.org/10.54033/cadpedv21n3-177

Issue

Section

Articles