Analysis of the chemical constituents of Myrcia glomerata G.Burton & E.Lucas leaves and assessment of their antimicrobial, antioxidant, and antibiofilm potential against pathogenic microorganisms

Authors

  • Joelma Marques Batista
  • Debora Marina Bandeira
  • Larissa Valéria Laskoski
  • Lilian Cristiane Baeza
  • Lázaro Henrique Soares de Moraes Conceição
  • Andressa Guarnieri Canton
  • Jéssica Rosset
  • Camila Vogt dos Santos
  • Fabiana Gisele da Silva Pinto

DOI:

https://doi.org/10.54033/cadpedv21n3-145

Keywords:

Biological Activities, GC-MS Analysis, Phytochemical, Microbial Resistance, Health

Abstract

The Myrtaceae family plays a significant role in the Angiosperm landscape in Brazil, standing out as one of the most relevant. Within this context, the genus Myrcia ranks as the fourth largest, and its plant extracts and essential oils from these species are recognized as a valuable source of plant bioactives. In this context, Myrcia glomerata, popularly known as guamirim, stands out. Despite belonging to the Myrtaceae family, there is a lack of detailed research on its biological activities and chemical composition. The phytochemical investigation of the different plant extracts: ethanolic (EE), methanolic (ME), hexane (HE), acetone (AE), ethyl acetate (EAE) and dichloromethane (DE) revealed the presence of saponins, free steroids, alkaloids, anthocyanins, anthocyanidins, flavones, flavonols, xanthones, chalcones, aurones, flavononols and tannins, leading to the quantification of phenolic compounds (flavonoids, tannins, and alkaloids). The essential oil of the leaves, identified by gas chromatography coupled to mass spectrometry (GC-MS) identified 29 compounds, corresponding to 97.54% of the total area of the essential oil of M. glomerata. The main compounds found were sesquiterpenes, Elemicin (76.85%), Elixene (3.99%), E-caryophyllene (2.25%). EE showed the best antimicrobial potential, with concentrations ranging from 0.39 to 25 mg.mL-1, with Staphylococcus aureus and Proteus mirabilis strains being more susceptible in EE, ME and AE, showing 98.72%, 96.23% and 88.60% antioxidant activity, respectively. As for the antibiofilm potential, ME showed the greatest biomass reduction (90.53%) for Salmonella enterica Typhimurium, with cell viability of 9.02%. These results demonstrate the potential of EE and ME extracts from M. glomerata, representing a possible source of natural bioactives to be used in pharmaceuticals for the control of resistant microorganisms.

References

ADAMS, R. P. 2007. Identification of essential oil components by Gas Chromatography/Mass Spectrometry. Illinois USA: Allured Publishing Corporation, Carol Stream.

ALCANTARA, G. A. & PAULA, J. R. Seasonal variation in the content of phenolic compounds in barks of Myrcia rostrata DC. by influence of environmental factors. Journal of Pharmacy Research, v.5, p.1306-1309, 2012.

ANDRADE, G. S. et al. Phytochemical screening, antinociceptive and anti-inflammatory effects of the essential oil of Myrcia pubiflora in mice. Revista Brasileira de Farmacognosia, v.22, p.181-188, 2012. DOI: https://doi.org/10.1590/S0102-695X2011005000205

BEVILACQUA HGCR. 2010. [viewed 25 september 2020] Planejamento de horta medicinal e comunitária. Divisão Tec. Esc. Municipal de Jardinagem / Curso de Plantas medicinais. Available from: http://www.google.com.br/q=nuplan+plantas+medicinais.

BANDEIRA, D. M. et al. Extraction, characterization of bioactive compounds and biological activities of the leaves of Podocarpus lambertii Klotzch ex Endl. Journal of Applied Research on Medicinal and Aromatic Plants, v.31, p.100427, 2022. DOI: https://doi.org/10.1016/j.jarmap.2022.100427

CÂNDIDO, C. S. et al. Effects of Myrcia ovata Cambess. essential oil on planktonic growth of gastrointestinal microorganisms and biofilm formation of Enterococcus faecalis. Brazilian Journal of Microbiology, v.41, p.621-627, 2010. DOI: https://doi.org/10.1590/S1517-83822010000300012

CERQUEIRA, M. D. de et al. Variação sazonal da composição do óleo essencial de Myrcia salzmannii Berg. (Myrtaceae). Química Nova, v.32, p.1544-1548, 2009. DOI: https://doi.org/10.1590/S0100-40422009000600035

CLINICAL AND LABORATORY STANDARDS INSTITUTE - CLSI. 2018. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; 11th Edition, CLSI standard M07. Wayne, PA: Clinical and Laboratory Standards Institute.

CHRISTENSEN, G. D. et al. Adherence of coagulase-negative Staphylococci to plastic tissue culture plates: a quantitative model for the adherence of Staphylococci to medical devices. Journal of Clinical microbiology, v.22, n.6, p.996-1006, 1985. DOI: https://doi.org/10.1128/jcm.22.6.996-1006.1985

COSTA, I. S. C. da et al. Ontogenesis, histochemistry, and seasonal and luminous environmental characterization of secretory cavities in leaves of Myrcia splendens (Myrtaceae). Botany, v.98, n.12, p.691-701, 2020. DOI: https://doi.org/10.1139/cjb-2020-0060

CUSHNIE, T. P. T. & LAMB, A. J. Recent advances in understanding the antibacterial properties of flavonoids. International journal of antimicrobial agents, v.38, n.2, p.99-107, 2011. DOI: https://doi.org/10.1016/j.ijantimicag.2011.02.014

DAVEY, M. E. & O'TOOLE, G. A. Microbial biofilms: from ecology to molecular genetics. Microbiology and Molecular Biology Reviews, v.64, n.4, p.847-867, 2000. DOI: https://doi.org/10.1128/MMBR.64.4.847-867.2000

FERNÁNDEZ-AGULLÓ, A. et al. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Industrial Crops and Products, v.42, p.126-132, 2013. DOI: https://doi.org/10.1016/j.indcrop.2012.05.021

FUMAGALI, E. et al. Produção de metabólitos secundários em cultura de células e tecidos de plantas: O exemplo dos gêneros Tabernaemontana e Aspidosperma. Revista Brasileira de Farmacognosia, v.18, p.627-641, 2008. DOI: https://doi.org/10.1590/S0102-695X2008000400022

GOBBO-NETO, L. & LOPES, N. P. Medicinal plants: factors of influence on the content of secondary metabolites. Química Nova, v.30, p.374-381, 2007. DOI: https://doi.org/10.1590/S0100-40422007000200026

GONÇALVES, L. A. et al. Production and composition of essential oil of alfavaquinha (Ocimim selloi Benth.) in response to two levels of solar radiation. Brazilian Journal of Medicinal Plant, v.6, p.8-14, 2015.

GYAWALI, R. & IBRAHIM, S. A. Natural products as antimicrobial agents. Food Control, v.46, p.412-429, 2014. DOI: https://doi.org/10.1016/j.foodcont.2014.05.047

HALL‐STOODLEY, L. & STOODLEY, P. Evolving concepts in biofilm infections. Cellular microbiology, v.11, n.7, p.1034-1043, 2009. DOI: https://doi.org/10.1111/j.1462-5822.2009.01323.x

HERNÁNDEZ ÁNGEL, M. & PRIETO GONZÁLEZ, E. A. Plantas que contienen polifenoles: antioxidantes dentro del estilo de vida. Revista Cubana de Investigaciones Biomédicas, v.18, n.1, p.12-12, 1999.

IBE, C. et al. Evaluation of the antioxidant activities of Psidium guajava and Aloe vera. British Journal of Pharmaceutical Research, v.4, n.3, p.397, 2014. DOI: https://doi.org/10.9734/BJPR/2014/6989

JIA, P. et al. Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin‐resistant Staphylococcus aureus. Letters in Applied Microbiology, v.53, n.4, p.409-416, 2011. DOI: https://doi.org/10.1111/j.1472-765X.2011.03122.x

JIMÉNEZ, D. et al. Componentes volatiles y actividad antibacteriana del vastago de Myrcia splendens (Sw.) DC. Revista de la Facultad de Farmacia, v.54, n.1, p.7-12, 2012.

KAUFFMANN, C. et al. Potencial antimicrobiano e antibiofilme in vitro de espécies do gênero Eugenia, Myrtaceae, Nativas do sul do Brasil. Revista Caderno Pedagógico, v.14, n.2, 2018. DOI: https://doi.org/10.22410/issn.1983-0882.v14i2a2017.1512

LASKOSKI, L. V. et al. Phytochemical prospection and evaluation of antimicrobial, antioxidant and antibiofilm activities of extracts and essential oil from leaves of Myrsine umbellata Mart. (Primulaceae). Brazilian Journal of Biology, v.82, p.e263865, 2022. DOI: https://doi.org/10.1590/1519-6984.263865

LIMBERGER, R. P. et al. Essential oils of Marlierea species. Journal of Essential Oil Research, v.16, n.5, p.479-482, 2004. DOI: https://doi.org/10.1080/10412905.2004.9698776

LIMBERGER, R. P. et al. Óleos voláteis de espécies de Myrcia nativas do Rio Grande do Sul. Química Nova, v.27, p.916-919, 2004. DOI: https://doi.org/10.1590/S0100-40422004000600015

LOGUERCIO, A. P. et al. Antibacterial activity of hydro-alcoholic extract leaves of jambolan (Syzygium cumini (L.) Skells). Ciência Rural, v.35, p.371-376, 2005. DOI: https://doi.org/10.1590/S0103-84782005000200019

LOMBARDO, A. Flora arborea y arborescente del Uruguay 2nd ed. Montevideo: Concejo Departamental. in Spanish, 151p, 1964.

LUCAS, E. & SOBRAL, M. J. Proposal to conserve the name Myrcia against Calyptranthes (Myrtaceae). Taxon, v.60, n.2, 605, 2011. DOI: https://doi.org/10.1002/tax.602044

MARSH, P. D. Dental plaque as a microbial biofilm. Caries research, v.38, n.3, p.204-211, 2004. DOI: https://doi.org/10.1159/000077756

MATOS, F. J. A. (1997). Introdução a fitoquímica experimental. 2ªed. Fortaleza: UFC, 147p.

MELO, P. de C. et al. Análise fenotípica e molecular da produção de biofilmes por estirpes de Staphylococcus aureus isoladas de casos de mastite subclínica bovina. Bioscience Journal, v.28, p.94-99, 2012.

MENUT, C. et al. Two chromene derivatives from Calyptranthes tricona. Phytochemistry, v.53, n.8, p.975-979, 2000. DOI: https://doi.org/10.1016/S0031-9422(99)00601-9

MORAIS, S. M. de et al. Ação antioxidante de chás e condimentos de grande consumo no Brasil. Revista Brasileira de Farmacognosia, v.19, p.315-320, 2009. DOI: https://doi.org/10.1590/S0102-695X2009000200023

MORESCO, H. H.; PIZZOLATTI, M. G.; BRIGHENTE, I. M. C. Constituents of Psidium cattleyanum. Chemistry of Natural Compounds, v.47, p.1028-1029, 2012a. DOI: https://doi.org/10.1007/s10600-012-0138-z

MORESCO, H. H. et al. Chemical constituents and evaluation of the toxic and antioxidant activities of Averrhoa carambola leaves. Revista Brasileira de Farmacognosia, v.22, p.319-324, 2012b. DOI: https://doi.org/10.1590/S0102-695X2011005000217

MORS, W. B. et al. Medicinal Plants of Brazil. Algonac: Reference Publications, Inc., 2000.

PANDINI, J. A. et al. Antimicrobial, insecticidal, and antioxidant activity of essential oil and extracts of Guarea kunthiana A. Juss. Journal of Medicinal Plants Research, v.9, n.3, p.48-55, 2015. DOI: https://doi.org/10.5897/JMPR2014.5551

PAULA, J. A. M. et al. Estudo farmacognóstico das folhas de Pimenta pseudocaryophyllus (Gomes) LR Landrum-Myrtaceae. Revista Brasileira de Farmacognosia, v.18, p.265-278, 2008. DOI: https://doi.org/10.1590/S0102-695X2008000200022

PIMENTEL, F. A. et al. Extracts from the leaves of Piper piscatorum (Trel. Yunc.) obtained by supercritical extraction of with CO2, employing ethanol and methanol as co-solvents. Industrial Crops and Products, v.43, p.490-495, 2013. DOI: https://doi.org/10.1016/j.indcrop.2012.07.067

RETAMALES, H. A. & SCHARASCHKIN, T. A staining protocol for identifying secondary compounds in Myrtaceae. Applications in Plant Sciences, v.2, n.10, p.1400063, 2014. DOI: https://doi.org/10.3732/apps.1400063

RICE-EVANS, C. A.; MILLER, N. J.; PAGANGA, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, v.20, n.7, p.933-956, 1996. DOI: https://doi.org/10.1016/0891-5849(95)02227-9

ROSA, C. S. et al. Composição química e toxicidade frente Aedes aegypti L. e Artemia salina Leach do óleo essencial das folhas de Myrcia sylvatica (G. Mey.) DC. Revista Brasileira de Plantas Medicinais, v.18, p.19-26, 2016. DOI: https://doi.org/10.1590/1983-084X/15_006

SÁ, F. A. S. et al. Essential oils in aerial parts of Myrcia tomentosa: composition and variability. Revista Brasileira de Farmacognosia, v.22, p. 233-1240, 2012. DOI: https://doi.org/10.1590/S0102-695X2012005000120

SAMY, R. P. & GOPALAKRISHNAKONE, P. Therapeutic potential of plants as antimicrobials for drug discovery. Evidence-based Complementary and Alternative Medicine, v.7, p.283-294, 2010. DOI: https://doi.org/10.1093/ecam/nen036

SANDASI, M.; LEONARD, C. M.; VILJOEN, A. M. The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control, v.19, n.11, p.1070-1075, 2008. DOI: https://doi.org/10.1016/j.foodcont.2007.11.006

SANTANA, C. B. et al. Antimicrobial and insecticidal effects of essential oil and plant extracts of Myrcia oblongata DC in pathogenic bacteria and Alphitobius diaperinus. Brazilian Journal of Biology, v.82, p.e233425, 2021. DOI: https://doi.org/10.1590/1519-6984.233425

SANTANA, C. B. et al. Chemical composition of essential oil from Myrcia oblongata DC and potencial antimicrobial, antioxidant and acaricidal activity against Dermanyssus gallinae (Degeer, 1778). Bioscience Journal, p.996-1009, 2018. DOI: https://doi.org/10.14393/BJ-v34n1a2018-39599

SANTOS, C. V. et al. Phytochemical prospection, antioxidante and antimicrobial activities of leaves extracts from Myrcia palustris DC. International Journal of Development Research, v.11, n.2, p.44724-44729, 2021.

SANTOS, C. V et al. Composição química, atividade antimicrobiana e antioxidante do óleo essencial de folhas de Myrcia palustris DC. (Myrtaceae). Research, Society and Development, v.10, n.3, e.20510313303, 2021 DOI: https://doi.org/10.33448/rsd-v10i3.13303

SANTOS, S. C. et al. Seasonal variation in the content of tannins in barks of barbatimão species. Revista Brasileira de Farmacognosia, v.16, p.552-556, 2006. DOI: https://doi.org/10.1590/S0102-695X2006000400019

SAUER, Karin. The genomics and proteomics of biofilm formation. Genome Biology, v.4, n.6, p.1-5, 2003.

SCHERER, R. & GODOY, H. T. Antioxidant activity index (AAI) by the 2, 2-diphenyl-1-picrylhydrazyl method. Food Chemistry, v.112, n.3, p.654-658, 2009. DOI: https://doi.org/10.1016/j.foodchem.2008.06.026

SCUR, M. C. et al. Occurrence and antimicrobial resistance of Salmonella serotypes isolates recovered from poultry of Western Paraná, Brazil. African Journal of Agricultural Research, v.9, n.9, p.823-830, 2014. DOI: https://doi.org/10.5897/AJAR2013.8202

SILVA, F. C.; DUARTE, L. P.; VIEIRA FILHO, S. A. Celastraceae family: Source of pentacyclic triterpenes with potential biological activity. Revista Virtual De Química, v.6, n.5, p.1205-1220, 2014. DOI: https://doi.org/10.5935/1984-6835.20140079

SILVA, A. C. et al. Resistência antimicrobiana de Salmonella spp., Staphylococcus aureus e Escherichia coli isolados de carcaças de frangos: resistência a antibióticos e óleos essenciais. Revista Brasileira de Agropecuária Sustentável, v.8, n.1, p. 95-103, 2018. DOI: https://doi.org/10.21206/rbas.v8i1.474

SILVA, L. A. da et al. Atividade antioxidante do óleo essencial de Myrcia sylvatica (G. Mey.) DC. por diferentes métodos de análises antioxidantes (ABTS, DPPH, FRAP, β-caroteno/ácido linoleico). Revista fitos, v.12, p.117-126, 2018. DOI: https://doi.org/10.5935/2446-4775.20180011

SILVA, L. A. 2015. Composição química e atividades antimicrobiana e antioxidante do óleo essencial de Myrcia sylvatica (G. Mey) DC. (Myrtaceae). Santarém: Universidade Federal do Oeste do Pará. 85 p. Dissertação de Mestrado em Ciências Ambientais.

SON, D. H. et al. 5-α reductase inhibitory effect and astringent activity of green apple rind extract on human keratinocytes and fibroblast cells. Bioscience, Biotechnology and Biochemistry, v.77, n.4, p.714-721, 2013. DOI: https://doi.org/10.1271/bbb.120757

SOUZA, J. G. L. et al. Biological activities and phytochemical screening of leaf extracts from Zanthoxylum caribaeum L. (Rutaceae). Bioscience Journal, v.36, p.223-234, 2020. DOI: https://doi.org/10.14393/BJ-v36n1a2020-48051

SOUZA, T. M. et al. Avaliação da atividade anti-séptica de extrato seco de Stryphnodendron adstringens (Mart.) Coville e de preparação cosmética contendo este extrato. Revista Brasileira de Farmacognosia, v.17, p.71-75, 2007. DOI: https://doi.org/10.1590/S0102-695X2007000100015

DE SOUZA, G. C. et al. Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. Journal of Ethnopharmacology, v.90, n.1, p.135-143, 2004. DOI: https://doi.org/10.1016/j.jep.2003.09.039

STEFANELLO, M. É. A.; PASCOAL, A. C. R. F.; SALVADOR, M. J. Essential oils from neotropical Myrtaceae: chemical diversity and biological properties. Chemistry & Biodiversity, v.8, n.1, p.73-94, 2011. DOI: https://doi.org/10.1002/cbdv.201000098

SU, J. D.; RAMAKRISHNAN, V.; PALMER, I. N. Biofilms. Otolaryngologic Clinics of North America, v.43, p.521–530, 2010. DOI: https://doi.org/10.1016/j.otc.2010.02.010

SWARTZ, O. Nova Genera et Species Plantarum. Prodomus descriptionum vegetabilium, maximam partem incognitorum quae sub itenere in Indian Occidentalem Aannis Digessit. 5nd ed., Holmiae - Upsaliae - Aboae (in Bibliopoliis Acad. M. Swederi), p.1783-1787, 1788. DOI: https://doi.org/10.5962/bhl.title.433

TAKAO, L. K.; IMATOMI, M.; GUALTIERI, S. C. J. Antioxidant activity and phenolic content of leaf infusions of Myrtaceae species from Cerrado (Brazilian Savanna). Brazilian Journal of Biology, v.75, p.948-952, 2015. DOI: https://doi.org/10.1590/1519-6984.03314

KUMAR, P. T. et al. Quantification of total flavonoid content and antioxidant activity in comparison to a reference flavonoid as in vitro quality evaluation parameter for assessing bioactivity of biomarkers in herbal extracts or formulations. JPR: BioMedRx: An International Journal, v.1, n.8, p.757-766, 2013.

TOLEDO, A. G. et al. Chemical composition, antimicrobial and antioxidant activity of the essential oil of leaves of Eugenia involucrata DC. Bioscience Journal, v.36, p. 568-577, 2020. DOI: https://doi.org/10.14393/BJ-v36n2a2020-48096

TOLEDO, A. G. et al. Antimicrobial, antioxidant activity and phytochemical prospection of Eugenia involucrata DC. leaf extracts. Brazilian Journal of Biology, v.83, p.e245753, 2021. DOI: https://doi.org/10.1590/1519-6984.245753

UMAH, C. et al. Secretory Structure, Histochemistry and Phytochemistry Analyses of Stimulant Plant. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2017. p. 012048. DOI: https://doi.org/10.1088/1755-1315/58/1/012048

YANAGIDA, A. et al. Inhibitory effects of apple polyphenols and related compounds on cariogenic factors of mutans streptococci. Journal of Agricultural and Food Chemistry, v.48, n.11, p.5666-5671, 2000. DOI: https://doi.org/10.1021/jf000363i

WCSP—World Checklist of Selected Plant Families. 2020. [viewed 12 february 2020] Royal Botanic Gardens, Kew. Available from: http://apps.kew.org/wcsp/.

WEBER, L. D. et al. Chemical composition and antimicrobial and antioxidant activity of essential oil and various plant extracts from Prunus myrtifolia. African Journal of Agricultural Research, v.9, n.9, p.846-853, 2014. DOI: https://doi.org/10.5897/AJAR2013.8260

WILSON, K. L. & MCNEILL, J. 2017. Report of the General Committee: 16. Taxon. 6: 189-190. DOI: https://doi.org/10.12705/661.15

ZOGHBI, M. D. G. B. et al. Essential oils from three Myrcia species. Flavour and Fragrance Journal, v.18, n.5, p.421-424, 2003. DOI: https://doi.org/10.1002/ffj.1242

Published

2024-03-21

How to Cite

Batista, J. M., Bandeira, D. M., Laskoski, L. V., Baeza, L. C., Conceição, L. H. S. de M., Canton, A. G., Rosset, J., Santos, C. V. dos, & Pinto, F. G. da S. (2024). Analysis of the chemical constituents of Myrcia glomerata G.Burton & E.Lucas leaves and assessment of their antimicrobial, antioxidant, and antibiofilm potential against pathogenic microorganisms. Caderno Pedagógico, 21(3), e3305. https://doi.org/10.54033/cadpedv21n3-145

Issue

Section

Articles