Analysis of the manufacturing of concrete paving blocks with by-products from thermoelectric power plant

Authors

  • Webert Brasil Cirilo da Silva
  • Suelly Helena de Araújo Barroso
  • Luís Guilherme de Picado-Santos
  • Antônio Eduardo Bezerra Cabral
  • Ronaldo Stefanutti

DOI:

https://doi.org/10.54033/cadpedv21n3-114

Keywords:

Interlocking Concrete Block Pavement, Coal Bottom Ash, Mechanical Characterization, Design Methods

Abstract

The key factor in constructing urban roads applying interlocking concrete block pavement (ICBP) is to employ an appropriate design method for better effectiveness. Concrete paving blocks (CPB) can also be manufactured using industrial by-products. Then, this paper aims to analyze CPB with coal bottom ash (CBA) from a Thermoelectric Power Plant through mechanical characterization and design methods for ICBP. To this end, tests, such as void index, water absorption, compressive strength, and elasticity modulus, were done on CPB for each mixture. Furthermore, empirical and mechanistic-empirical design methods for ICBP were applied. Then, four dry concrete mixtures (two with CBA and two without CBA) were designed with two water/cement ratios (0.63 and 0.73) to produce rectangular CPB measuring 20 cm × 10 cm × 8 cm (length × width × thickness) by a vibro-press machine. Furthermore, ICBP sections were designed, applying six simulations from empirical and mechanistic-empirical design methods. The results showed that the mixtures A73 and B73 with more water, i.e., water/cement ratio of 0.73, presented higher characteristic compressive strength at 28 days (25.34 MPa and 15.88 MPa, respectively) than the other mixes A63 and B63 with less water, i.e., water/cement ratio of 0.63 (these two mixes showed 15.85 MPa). Furthermore, the CPB application for bike paths or parking areas was allowed according to the Australian specification of 15 MPa for compressive strength test. Also, all ICBP sections from the mechanistic-empirical design required approximately 24.9% fewer materials for the sub-base layer than the empirical process. Finally, the CPB application is possible for areas with light traffic, and the ICBP technology was more feasible with the mechanistic-empirical design method.

References

AASHTO. M 145: Standard Specification for Classification of Soils and Soil – Aggregate Mixtures for Highway Construction Purposes. Washington, D.C.: American Association of State Highway and Transportation Officials, 1995. 9 p.

ABNT. NBR 10004: Solid waste – Classification. 2. ed. Rio de Janeiro: Brazilian Technical Standards Association, 2004. 77 p.

ABNT. NBR 10005: Procedure for obtention leaching extract of solid wastes. 2. ed. Rio de Janeiro: Brazilian Technical Standards Association, 2004. 20 p.

ABNT. NBR 10006: Procedure for obtention of solubilized extraction of solid wastes. 2. ed. Rio de Janeiro: Brazilian Technical Standards Association, 2004. 7 p.

ABNT. NBR 9778: Hardened mortar and concrete – Determination of absorption, voids and specific gravity. 2. ed. Rio de Janeiro: Brazilian Technical Standards Association, 2005. 8 p.

ABNT. NBR 9833: Fresh concrete – Determination of the unit weight, yield and air content by the gravimetric test method. 2. ed. Rio de Janeiro: Brazilian Technical Standards Association, 2008. 11 p.

ABNT. NBR 15630: Mortars applied on walls and ceilings – Determination of elasticity modulus by the ultrasonic wave propagation. Rio de Janeiro: Brazilian Technical Standards Association, 2008. 8 p.

ABNT. NBR 15953: Interlocking pavement with concrete units – Execution. Rio de Janeiro: Brazilian Technical Standards Association, 2011. 19 p.

ABNT. NBR 9781: Concrete paving units – Specification and test methods. 2. ed. Rio de Janeiro: Brazilian Technical Standards Association, 2013. 27 p.

ABNT. NBR 16605: Portland cement and other powdered material – Determination of the specific gravity. Rio de Janeiro: Brazilian Technical Standards Association, 2017. 8 p.

ABNT. NBR 16916: Fine Aggregate – Determination of Density and Water Absorption. Rio de Janeiro: Brazilian Technical Standards Association, 2021. 11p.

ABNT. NBR 16917: Coarse Aggregate – Determination of Density and Water Absorption. Rio de Janeiro: Brazilian Technical Standards Association, 2021. 10p.

ABNT. NBR 16972: Aggregates – Determination of the Unit Weight and Air-Void Contents. Rio de Janeiro: Brazilian Technical Standards Association, 2021. 10 p.

ABNT. NBR 17054: Aggregates – Determination of granulometric composition – Test method. Rio de Janeiro: Brazilian Technical Standards Association, 2022. 9 p.

ALCANTARA, M. R. G. Estudo da utilização de cinzas pesadas de termoelétricas para produção de blocos de concreto para pavimentos intertravados. 2018. 99 f. Thesis (M.Sc. in Transportation Engineering) – Federal University of Ceara, Fortaleza, 2018.

ARAUJO, T. G. Viabilidade de aplicação das cinzas da bacia de resíduos da termelétrica do Pecém no concreto. 2016. 59 f. Thesis (Monograph in Civil Engineering) – Federal University of Ceara, Fortaleza, 2016.

BAIRD, C.; CANN, M. Química Ambiental. 4. ed. Porto Alegre: Grupo A, 2011. 844 p.

CARVALHO, M. D. Estudo Técnico 27: Pavimentação com peças pré-moldadas de concreto. 4. ed. Sao Paulo: ABCP, 1998. 33 p.

CMAA. DesignPave v2.0 (Version 2.0). Concrete Masonry Association of Australia, 2018. Available at: <https://www.cmaa.com.au/DesignPave/

registration>. Consulted on: 14 Feb. 2023.

CRUZ, L. O. M. Pavimento Intertravado de Concreto: Estudo dos Elementos e Métodos de Dimensionamento. 2003. 281 f. Thesis (M.Sc. in Civil Engineering) – Federal University of Rio de Janeiro, Rio de Janeiro, 2003.

DIETZ, M. E. Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions. Water, Air, and Soil Pollution, v. 186, p. 351-363, 2007.

DNER. ME 180: Solos estabilizados com cinza volante e cal hidratada – determinação da resistência à compressão simples. Brasilia, DF: National Highway Department, 1994. 11 p.

DNIT. ME 172: Solos – Determinação do Índice de Suporte Califórnia utilizando amostras não trabalhadas – Método de ensaio. Brasilia, DF: National Transport Infrastructure Department, 2016. 17 p.

DNIT. ME 134: Pavimentação – Solos – Determinação do módulo de resiliência – Método de ensaio. Brasilia, DF: National Transport Infrastructure Department, 2018. 18 p.

GANJIAN, E.; JALULL, G.; SADEGHI-POUYA, H. Using waste materials and by-products to produce concrete paving blocks. Construction and Building Materials, v. 77, p. 270-275, 2015.

HALLACK, A. Dimensionamento de pavimentos com revestimento de peças pré-moldadas de concreto para áreas portuárias e industriais. 1999. Thesis (M.Sc. in Transportation Engineering) – University of Sao Paulo, Sao Paulo, 1999.

HELENE, P.; TERZIAN, P. Manual de Dosagem e Controle de Concreto. Sao Paulo: Pini Ltda, 1992. 349 p.

ODEMARK, N. Investigations as to the Elastic Properties of Soils and Design of Pavements according to the Theory of Elasticity. 1949. 107 f. Thesis (Ph.D. in Infrastructure Engineering) – Statens Vagins Institute, Stockholm, 1949.

PMSP. Instrução de Projeto 06: Dimensionamento de pavimentos com blocos intertravados de concreto. Sao Paulo: City Hall, 2004. 17 p.

RAHMAN, M. M.; BEECHAM, S.; MCLNTYRE, E.; IQBAL, A. Mechanistic design of concrete block pavements. In: 2018 AUSTRALIAN GEOMECHANICS SOCIETY VICTORIAN SYMPOSIUM, 2018. Proceedings… Melbourne: AGS, 2018, p. 13-17.

RODRIGUES, P. P. F. Estudo Técnico 67: Parâmetros de dosagem do concreto. 3. ed. Sao Paulo: ABCP, 1998. 35 p.

SA. AS/NZS 4456.4: Masonry units and segmental pavers and flags – Methods of test – Determining compressive strength of masonry units. Sydney: Standards Australia, 2003. 6 p.

SHACKEL, B. Design and Construction of Interlocking Concrete Block Pavements. London and New York: Elsevier Applied Science, 1990. 229p.

SHACKEL, B. Computer based procedures for the design and specification of concrete block pavements. In: INTERNATIONAL CONFERENCE ON CONCRETE BLOCK PAVING, 4., 1992. Proceedings… Auckland: SEPT, p. 79-87.

SILVA, W. B. C. Análise da viabilidade da fabricação de blocos intertravados de pavimentos de concreto com o uso de resíduos de termelétrica e de agregados reciclados da construção civil. 2020. 202 f. Thesis (M.Sc. in Transportation Engineering) – Federal University of Ceara, Fortaleza, 2020.

SILVA, W.; BARROSO, S.; CABRAL, A.; STEFANUTTI, R.; PICADO-SANTOS, L. Assessment of concrete road paving blocks with coal bottom ash: Physical and mechanical characterization. Case Studies in Construction Materials, v. 18, e02094, 2023a.

SILVA, W.; BARROSO, S.; CABRAL, A.; STEFANUTTI, R.; PICADO-SANTOS, L. Assessment of Interlocking Concrete Block Pavement with By-Products and Comparison with an Asphalt Pavement: A Review. Applied Sciences, v. 13, n. 10, 5846, 2023b.

VASCONCELOS, S. D. Avaliação da heterogeneidade de cinzas de carvão mineral advindas da termelétrica energia pecém e sua aplicação em camadas granulares de pavimentos. 2016. 122 f. Thesis (Monograph in Civil Engineering) – Federal University of Ceara, Fortaleza, 2016.

VASCONCELOS, S. D. Avaliação das cinzas de carvão mineral produzidas em usina termelétrica para construção de camadas de pavimentos. 2018. 135 f. Thesis (M.Sc. in Transportation Engineering) – Federal University of Ceara, Fortaleza, 2018.

Published

2024-03-20

How to Cite

Silva, W. B. C. da, Barroso, S. H. de A., Picado-Santos, L. G. de, Cabral, A. E. B., & Stefanutti, R. (2024). Analysis of the manufacturing of concrete paving blocks with by-products from thermoelectric power plant. Caderno Pedagógico, 21(3), e3257. https://doi.org/10.54033/cadpedv21n3-114

Issue

Section

Articles