Liquid chromatographic fractionation of bio-oil from sugarcane bagasse: influence of heating rate on bio-oil yield and quality

Authors

  • Nathalia Mendonça Conrado
  • Anne Raquel Teixeira Cardoso
  • Rafael de Oliveira Farrapeira
  • Jaderson Kleveston Schneider
  • Thiago Rodrigues Bjerk
  • Laiza Canielas Krause
  • Elina Bastos Caramão

DOI:

https://doi.org/10.54033/cadpedv21n3-049

Keywords:

sugarcane, pyrolysis, fractionation, phenols

Abstract

Brazil stands out in the field of using biomass as a source of energy and biomaterials, due to its territorial extension, biodiversity and climatic conditions. In this sense, one can highlight the high potential of bio-products generated from biomass. This is the case of sugarcane bagasse, produced in large quantities allied to the sugar and alcohol industry. In Brazil, much research has been done to improve its amount of fiber, aiming at the production of alternative fuels and generating the so-called "energy cane". Thus, it was studied the use of sugarcane bagasse for the production of bio-oil through pyrolysis and the isolation of fractions for industrial application. A comparison was also made between two types of sugarcane, a commercial variety (Saccharum sp.) and a variety with some genetic improvement (Erianthus arundinaceus). The final pyrolysis temperature was set at 500 ° C by varying the heating rates (25, 45, and 65 ° C min-1). The bio-oils were fractionated using preparative liquid chromatography and their fractions were analyzed by gas chromatography coupled to mass spectrometry. The fractionation of bio-oils increased the number of compounds identified by about 50%, besides allowing the isolation of apolar compounds. In addition, it was found that the genetic improved sugarcane presented higher bio-oil content, with higher hydrocarbon content, when compared to commercial sugarcane, demonstrating that the improvement process was efficient. Among the compounds identified were phenols, furfural derivatives and hydrocarbons, which indicates the potential use of bio-oil not only as bio-fuels, but also for industrial purposes.

References

Vuppaladadiyam, A.K., Vuppaladadiyam, S.S.V., Sahoo, A., Murugavelh, S., Anthony, E., Bhaskar, T., Zheng, Y., Duan, H., Zhao, Y., Antunes, E., Ajit & Leu, S. Y.: Bio-oil and biochar from the pyrolytic conversion of biomass: A current and future perspective on the trade-off between economic, environmental, and technical indicators. Sci. Total Environ., 857, 159-155 (2023). https://doi.org/10.1016/j.scitotenv.2022.159155 DOI: https://doi.org/10.1016/j.scitotenv.2022.159155

Cardoso, A.R.T., Conrado, N.M., Krause, M.C., Bjerk, T.R., Krause, L.C., Caramao, E.B.: Chemical characterization of the bio-oil obtained by catalytic pyrolysis of sugarcane bagasse (industrial waste) from the species Erianthus Arundinaceus. J. Environ. Chem. Eng., 7 (2), 102970 (2019). https://doi.org/10.1016/j.jece.2019.102970 DOI: https://doi.org/10.1016/j.jece.2019.102970

Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T.: Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk, Bioresource Technol. 237 57-63 (2017). https://doi.org/10.1016/j.biortech.2017.02.046 DOI: https://doi.org/10.1016/j.biortech.2017.02.046

Treedet, W., Suntivarakorn, T.: Design and operation of a low cost bio-oil fast pyrolysis from sugarcane bagasse on circulating fluidized bed reactor in a pilot plant. Fuel Process. Technol. 179, 17-31 (2018). https://doi.org/10.1016/j.fuproc.2018.06.006 DOI: https://doi.org/10.1016/j.fuproc.2018.06.006

Charusiri, W., Vitidsant, T.: Biofuel production via the pyrolysis of sugarcane (Saccharum officinarum L.) leaves: Characterization of the optimal conditions. Sust. Chem. Pharm. 10, 71–78 (2018). https://doi.org/10.1016/j.scp.2018.09.005 DOI: https://doi.org/10.1016/j.scp.2018.09.005

Lee, J., Kim, S., You, S., & Park, Y. K.: Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems. Renovar. Sust. Energ. Rev. 178, 113-240 (2023). https://10.1016/j.rser.2023.113240 DOI: https://doi.org/10.1016/j.rser.2023.113240

Srivastava, N., Singh, R., Singh, P., Ahmad, I., Singh, R.P., Rai, A.K., Asiri, M., Gupta, V.K.: Recent advances on lignocellulosic bioresources and their valorization in biofuels production: Challenges and viability assessment. Environ. Technol. Innovation. 29, 103037 (2023). https://10.1016/j.eti.2023.103037 DOI: https://doi.org/10.1016/j.eti.2023.103037

Pazuch, F.A., Nogueira, C.E.C., Souza, S.N.M., Micuanski, V.C., Friedrich, L., Lenz, A.M.: Economic evaluation of the replacement of sugar cane bagasse by vinasse, as a source of energy in a power plant in the state of Paraná. Brazil. Renew. Sust. Energ. Rev. 76, 34-42 (2017). https://10.1016/j.rser.2017.03.047 DOI: https://doi.org/10.1016/j.rser.2017.03.047

Silveira, L.C.I.D., Brasileiro, B.P., Kist, V., Weber, H., Daros, E., Peternelli, L.A., Barbosa, M.H.P.: Selection in energy cane families. Crop. Breed. Appl. Biot. 16(4), 298-306 (2016). https://doi.org/10.1590/1984-70332016v16n4a45 DOI: https://doi.org/10.1590/1984-70332016v16n4a45

Fanelli, A., Reinhardt, L., Matsuoka, S., Ferraz, A., da Franca Silva, T., Hatfield, R. D., Romanel, E.: Biomass composition of two new energy cane cultivars compared with their ancestral Saccharum spontaneum during internode development. Biomass Bioenergy. 141, 105696 (2020). https://doi.org/10.1016/ DOI: https://doi.org/10.1016/j.biombioe.2020.105696

j.biombioe.2020.105696

Al Arni, S.: Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energ, 124, 197-201 (2018). https://doi.org/10.1016/j.renene. DOI: https://doi.org/10.1016/j.renene.2017.04.060

04.060

Costa, M.A.M., Schiavon, N.C.B., Felizardo, M.P., Souza, A.J.D., Dussán, K.J.: Emission analysis of sugarcane bagasse combustion in a burner pilot. Sustain. Chem. Pharm. 32, 101028 (2023). https://doi.org/10.1016/j.scp. DOI: https://doi.org/10.1016/j.scp.2023.101028

101028

Hassan, H., Lim, J.K. Hameed, B.H. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil. Bioresource Technol. 221, 645-655 (2016). https://doi.org/10.1016/j.biortech.2016.09.026 DOI: https://doi.org/10.1016/j.biortech.2016.09.026

Zhang, Y., Liang, Y., Li, S., Yuan, Y., Zhang, D., Wu, Y., Xia, C.: A review of biomass pyrolysis gas: Forming mechanisms, influencing parameters, and product application upgrades. Fuel. 347, 128461 (2023). https://doi.org/10.1016/ DOI: https://doi.org/10.1016/j.fuel.2023.128461

j.fuel.2023.128461

Tomasini, D., Cacciola, F., Rigano, F., Sciarrone, D., Donato, P., Beccaria, M., Caramão, E. B., Dugo, P., Mondello, L.: Complementary analytical liquid chromatography methods for the characterization of aqueous phase from pyrolysis of lignocellulosic biomasses. Anal. Chem. Res. 86(22) 11255-11262 (2014). https://doi.org/10.1021/ac5038957 DOI: https://doi.org/10.1021/ac5038957

Da Cunha, M.E., Schneider, J.K., Brasil, M.C., Cardoso, C.A., Monteiro, L.R., Mendes, F.L., Caramão, E.B.: Analysis of fractions and bio-oil of sugar cane straw by one-dimensional and two-dimensional gas chromatography with quadrupole mass spectrometry (GC× GC/qMS). Microchem. J. 110, 113-119 (2013). https://doi.org/10.1016/j.microc.2013.03.004 DOI: https://doi.org/10.1016/j.microc.2013.03.004

Fu, D., Farag, S., Chaouki, J., Jessop, P.G.: Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent. Bioresource Technol. 154, 101-108 (2014). https://doi.org/10.1016/j.biortech.2013.11.091 DOI: https://doi.org/10.1016/j.biortech.2013.11.091

Muranaka, Y., Nakagawa, H., Hasegawa, L., Maki, T., Hosokawa, J., Ikuta, J., Mae, K.: Lignin-based resin production from lignocellulosic biomass combining acidic saccharification and acetone-water treatment. Chemic. Eng. J. 308, 754-759 (2017). https://doi.org/10.1016/j.cej.2016.09.117 DOI: https://doi.org/10.1016/j.cej.2016.09.117

Van den Dool, H., Kratz, P.D.: A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A. 11, 463-471 (1963). https://doi.org/10.1016/S0021-9673(01) DOI: https://doi.org/10.1016/S0021-9673(01)80947-X

-X

Henkel, C., Muley, P.D., Abdollahi, K.K., Marculescu, C., Boldor, D.: Pyrolysis of energy cane bagasse and invasive Chinese tallow tree (Triadica sebifera L.) biomass in an inductively heated reactor. Energy Convers. Manag. 109, 175-183 (2016). https://doi.org/10.1016/j.enconman.2015.12.013 DOI: https://doi.org/10.1016/j.enconman.2015.12.013

Wang, Y., Mourant, D., Hu, X., Zhang, S., Lievens, C., Li, C.Z.: Formation of coke during the pyrolysis of bio-oil. Fuel, 108, 439-444 (2013). https://doi.org/10.1016/j.fuel.2012.11.052 DOI: https://doi.org/10.1016/j.fuel.2012.11.052

Kurnia, I., Karnjanakom, S., Bayu, A., Yoshida, A., Rizkiana, J., Prakoso, T., Abudula A., Guan, G.: In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of lignin over high aluminum zeolites. Fuel Process. Technol. 167, 730-737 (2017). https://doi.org/10.1016/j.fuproc.2017.08.026 DOI: https://doi.org/10.1016/j.fuproc.2017.08.026

Varma, A.K., Mondal, P.: Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Ind. Crops Prod. 95, 704-717(2017). https://doi.org/10.4028/www. DOI: https://doi.org/10.1016/j.indcrop.2016.11.039

scientific.net/MSF.1008.159

Betemps, G. R., Silveira, L.A., Sampaio, D.M., Bispo, M.D., Krause, L.C., Caramão, E.B., Sanches Filho, P.J., Da Cunha, M.E.: Chromatographic characterization of bio-oil generated from rapid pyrolysis of rice husk in stainless steel reactor. Microchem. J. 134, 218-223 (2017). https://doi.org/10.1016/j.microc.2017.06.007 DOI: https://doi.org/10.1016/j.microc.2017.06.007

Sanches Filho, P.J., Silveira, L.A., Betemps, G.R., Montenegro, G.O. Sampaio, D.M., Caramão, E.B.: Application of the SARA method for determination of hydrocarbons by GC/qMS in bio-oil obtained by fast pyrolysis of rice husk. Microchem. J. 135, 226-238 (2017). https://doi.org/10.1016/ DOI: https://doi.org/10.1016/j.microc.2017.08.015

j.microc.2017.08.015 DOI: https://doi.org/10.1088/1475-7516/2017/08/015

Barros, J.A., Krause, M.C., Lazzari, E., Bjerk, T.R., Do Amaral, A.L., Caramão, E.B., Krause, L.C.: Chromatographic characterization of bio-oils from fast pyrolysis of sugar cane residues (straw and bagasse) from four genotypes of the SAC Complex. Microchem. J. 137, 30-36 (2018). https://doi.org/10.1016/j.microc.2017.09.015 DOI: https://doi.org/10.1016/j.microc.2017.09.015

Carvalho, W.S., Júnior, J.A.S., De Oliveira, T.J.P., Ataíde, C.H.: Fast pyrolysis of sweet sorghum bagasse in a fluidized bed reactor: Product characterization and comparison with vapors generated in analytical pyrolysis. Energy. 131, 186-197 (2017). https://doi.org/10.1016/j.energy.2017.05.058 DOI: https://doi.org/10.1016/j.energy.2017.05.058

Kim, S.J., Jung, S.H., Kim, J.S.: Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresour. Technol. 101(23), 9294-9300 (2010). https://doi.org/10.1016/j.biortech.2010.06.110 DOI: https://doi.org/10.1016/j.biortech.2010.06.110

Kim, J.S.: Production, separation and applications of phenolic-rich bio-oil–a review. Bioresour. Technol. 178, 90-98 (2015). https://doi.org/10.1016/j.biortech. DOI: https://doi.org/10.1016/j.biortech.2014.08.121

08.121

Özbay, G., Ayrilmis, N.: Bonding performance of wood bonded with adhesive mixtures composed of phenol-formaldehyde and bio-oil. Ind. Crops Prod. 66, 68-72 (2015). https://doi.org/10.1016/j.indcrop.2014.12.028 DOI: https://doi.org/10.1016/j.indcrop.2014.12.028

Feng, J., Yang, Z., Hse, C.Y., Su, Q., Wang, K., Jiang, J., Xu, J.: In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading. Renew. Energy. 105, 140-148 (2017). https://doi.org/10.1016/j.renene.2016.12.054 DOI: https://doi.org/10.1016/j.renene.2016.12.054

Ayrilmis, N., Özbay, G.: Technological properties of plywood bonded with phenol-formaldehyde resol resin modified with bio-oil. CERNE. 23(4), 493-500 (2018). https://doi.org/10.1590/01047760201723042351 DOI: https://doi.org/10.1590/01047760201723042351

Andrade, L.A., Barrozo, M.A.S., Vieira, L.G.M.: Thermo-chemical behavior and product formation during pyrolysis of mango seed shell. Ind. Crops Prod. 85, 174-180 (2016). https://doi.org/10.1016/j.indcrop.2016.03.004 DOI: https://doi.org/10.1016/j.indcrop.2016.03.004

Janes D., Kantar, D., Kreft, S., Prosen, H.: Identification of buckwheat (Fagopyrum esculentum Moench) aroma compounds with GC-MS. Food Chem. 112, 120–124 (2008). https://doi.org/10.1016/j.foodchem.2008.05.048 DOI: https://doi.org/10.1016/j.foodchem.2008.05.048

Moraes, M.S.A., Migliorini, M.V., Damasceno, F.C., Georges, F., Almeida, S., Zini, C.A., Caramão, E.B.: Qualitative analysis of bio-oils of agricultural residues obtained through pyrolysis using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detector. J. Anal. App. Pyrol. 98, 51-64 (2012). https://doi.org/10.1016/j.jaap.2012.05.007 DOI: https://doi.org/10.1016/j.jaap.2012.05.007

Lu, Q., Dong, C.Q., Zhang, X.M., Tian, H.Y., Yang, Y. P., Zhu, X.F.: Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: Analytical Py-GC/MS study. J Anal Appl Pyrolysis. 90(2), 204-212 (2011). https://doi.org/ DOI: https://doi.org/10.1016/j.jaap.2010.12.007

1016/j.jaap.2011.03.002 DOI: https://doi.org/10.1088/1475-7516/2011/03/002

Morais, L.K., Cursi, D.E., Dos Santos, J.M., Carneiro, M.S., Câmara, T.M.M., Silva, P.A., Barbosa, G.V., Hoffmann, H.P., Chapola, R.G., Fernandes J.A.R., Gazaffi, R.: Genetic Improvement of sugarcane, Embrapa Tabuleiros Costeiros, Aracaju – SE. 2015. Available in: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1042764/melhoramento-genetico-da-cana-de-acucar. Accessed 15 January 2023.

Liu, T., Cao, J., Zhao, X., Wang, J., Ren, X., Fan X., Zhao, Y., Wei, X.: In situ upgrading of Shengli lignite pyrolysis vapors over metal-loaded HZSM-5 catalyst. Fuel Process Technol. 160, 19-26 (2017). https://doi.org/10.1016/j.fuproc.2017. DOI: https://doi.org/10.1016/j.fuproc.2017.02.012

012

Lorenzetti, C., Conti, R., Fabbri, D., Yanik, J.: A comparative study on the catalytic effect of H-ZSM5 on upgrading of pyrolysis vapors derived from lignocellulosic and proteinaceous Biomass. Fuel. 166, 446–452 (2016). https://doi.org/10.1016/j.fuel.2015.10.051 DOI: https://doi.org/10.1016/j.fuel.2015.10.051

Bordoloi, N., Narzari, R., Sut, D., Saikia, R., Chutia, R.S., Kataki, R.: Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus. Renew. Energy. 98, 245-253 (2016). 10.1016/j.renene.2016.03.081 DOI: https://doi.org/10.1016/j.renene.2016.03.081

Conti, R., Fabbri, D., Torri, C., Hornung, A.: At-line characterisation of compounds evolved during biomass pyrolysis by solid-phase microextraction SPME-GC-MS. Microchem. J. 124, 36-44 (2016). 10.1016/j.microc.2015.07.017 DOI: https://doi.org/10.1016/j.microc.2015.07.017

Bispo, M.D., Barros, J.A.S., Tomasini, D., Primaz, C., Caramão, E.B., Dariva, C., Krause, L.C.: Pyrolysis of Agroindustrial Residues of Coffee, Sugarcane Straw and Coconut-Fibers in a Semi-pilot Plant for Production of Bio-oils: Gas Chromatographic Characterization. Int. J. Earth Sci. Eng. 6, 235-244 (2016). 10.17265/2159-581X/2016.05.001 DOI: https://doi.org/10.17265/2159-581X/2016.05.001

Published

2024-03-08

How to Cite

Conrado, N. M., Cardoso, A. R. T., Farrapeira, R. de O., Schneider, J. K., Bjerk, T. R., Krause, L. C., & Caramão, E. B. (2024). Liquid chromatographic fractionation of bio-oil from sugarcane bagasse: influence of heating rate on bio-oil yield and quality. Caderno Pedagógico, 21(3), e3061. https://doi.org/10.54033/cadpedv21n3-049

Issue

Section

Articles